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Arithmétique – Partie 2 
 

I. Congruence 
 
Définition I.1 : Soient 𝑚, 𝑛 deux entiers relatifs et 𝑑 un entier naturel supérieur ou égal à 2. On dit que 𝑚 et 𝑛 sont 
congrus modulo 𝑑 si 𝑛	 − 	𝑚 est divisible par 𝑑. On note alors 𝑛	 ≡ 𝑚	[𝑑] 
 
Exemple I.2 :	8	 ≡ 2	[3]	car 8 − 2 = 6 est divisible par 3. 
 
Remarque I.3 : Soit 𝑎 un entier relatif et 𝑏 un entier relatif non nul. Il existe (division euclidienne de 𝑎 par 𝑏) un unique 
couple (𝑞	; 𝑟) 	∈ ℤ! tel que 7𝑎 = 𝑏𝑞 + 𝑟

0 ≤ 𝑟 < |𝑏|. 

Donc 𝑎 − 𝑟 = 𝑏𝑞 et donc 𝑎	 ≡ 𝑟	[𝑏]. 
 
Remarque I.4 : Attention ! 
Si 𝑎	 ≡ 𝑟	[𝑏],alors 𝑟 n’est pas forcément le reste de la division euclidienne de 𝑎 par 𝑏.  
 
Contre-exemple I.5 : 
65 − (−5) = 70 = 7 × 10 donc 65 ≡ −5[7] mais 65 = 7 × 10 − 5 n’est pas la division euclidienne de 65 par 7, celle-ci 
étant 65 = 7 × 9 + 2. 
 
Remarque I.6 : Soient 𝑚, 𝑛 deux entiers relatifs et 𝑑 un entier naturel supérieur ou égal à 2. Alors par définition : 

𝑛	 ≡ 𝑚	[𝑑] si et seulement s’il existe 𝑘	 ∈ ℤ tel que 𝑛	 = 	𝑚	 + 	𝑘𝑑. 
 
Propriété I.7 : 
Soient 𝑚,𝑛,𝑚′, 𝑛′	quatre entiers relatifs et 𝑑 un entier naturel supérieur ou égal à 2.  
Si 𝑛	 ≡ 𝑚	[𝑑] et 𝑛′	 ≡ 𝑚′	[𝑑] alors : 
 

1) 𝑛	 + 	𝑛′	 ≡ 	𝑚	 + 	𝑚′	[𝑑] 
2) 𝑛𝑛′	 ≡ 	𝑚𝑚′	[𝑑] 
3) ∀	𝑝 ∈ ℕ, 		𝑛	" ≡ 𝑚"	[𝑑] 
4) ∀	𝑎 ∈ ℤ, 𝑎𝑛	º	𝑎𝑚	[𝑑] 

 
Démonstration :  
Si 𝑛	 ≡ 𝑚	[𝑑]	et	𝑛′	 ≡ 		𝑚′	[𝑑] alors il existe (𝑘; 𝑘′) 	∈ ℤ! tels que : H 𝑛	 = 	𝑚	 + 	𝑘𝑑	

𝑛′	 = 	𝑚′	 + 	𝑘′𝑑. 
Donc : 

1) 𝑛	 + 	𝑛′	 = 	𝑚	 + 	𝑚′	 +	(𝑘	 + 	𝑘′)𝑑 
Or 𝑘	 + 	𝑘′	 ∈ ℤ donc 𝑛	 + 	𝑛′	 ≡ 	𝑚	 + 	𝑚′	[𝑑]. 
 

2) 𝑛	 ×	𝑛# = (𝑚	 + 	𝑘𝑑) × (	𝑚# +	𝑘#𝑑) = 		𝑚	 × 	𝑚′	 +	(𝑘𝑚′	 + 	𝑘′𝑚	 + 	𝑘𝑘′)𝑑.  
Or 𝑘𝑚′ + 	𝑘′𝑚	 + 	𝑘𝑘′	 ∈ ℤ donc 𝑛	 × 	𝑛′	º		𝑚	 × 	𝑚′	[𝑑]. 
 

3) 𝑛" 	−	𝑚" 	= 	 (𝑛	 − 	𝑚)(𝑛"$% 	+	𝑛"$!𝑚	 +	…	+	𝑚"$%) (Égalité de Bernouilli, voir ci-après) 
Or 𝑛	 − 	𝑚	 ≡ 	0	[𝑑] et 𝑛"$% 	+	𝑛"$!𝑚	 +	…	+	𝑚"$% ∈ ℤ donc 𝑛" 	−	𝑚" 	≡ 	0	[𝑑] ie 𝑛" 	≡ 𝑚"	[𝑑]. 
 

4) 𝑎𝑛	 = 	𝑎(𝑚	 + 	𝑘𝑑) = 𝑎𝑚	 + 	𝑎𝑘𝑑.  
Or 𝑎𝑘	 ∈ ℤ donc 𝑎𝑛	 ≡ 	𝑎𝑚	[𝑑] 

 
Remarque I.8 : Attention !  
Les réciproques sont fausses. 
 
Propriété I.9 : (égalité de Bernouilli) 
Soient 𝑎, 𝑏 deux nombres réels et 𝑛 un entier naturel supérieur ou égal à 1. 
 
Alors : 𝑎& − 𝑏& = (𝑎 − 𝑏)∑ 𝑎&$'$%𝑏'&$%

'() = (𝑎 − 𝑏)(𝑎&$% + 𝑎&$!𝑏 +⋯+ 𝑎𝑏&$! + 𝑏&$%). 
 
Démonstration : 

(𝑎 − 𝑏)M𝑎&$'$%𝑏'
&$%

'()

= 𝑎M𝑎&$'$%𝑏'
&$%

'()

− 𝑏M𝑎&$'$%𝑏'
&$%

'()

 

																																				= M𝑎&$'𝑏'
&$%

'()

−M𝑎&$'$%𝑏'*%
&$%

'()
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																									= M𝑎&$'𝑏'
&$%

'()

−M𝑎&$+𝑏+
&

+(%

 

																																														= 𝑎& +M𝑎&$'𝑏'
&$%

'(%

−M𝑎&$+𝑏+
&$%

+(%

− 𝑏& 

																																																																																																								= 𝑎& − 𝑏& 
 
Application I.10 : Puissances d'un entier 
Déterminer les restes de la division par 5 des puissances de 2&  pour 𝑛 ∈ ℕ. 
 
Solution : 

2) = 	1	 ≡ 1	[5] 
2% = 	2	 ≡ 2	[5] 
2! = 	4	 ≡ 4	[5] 
2, = 	8	 ≡ 3	[5] 
2- = 	16	 ≡ 1	[5] 
2. = 	32	 ≡ 2	[5] 
2/ = 	64	 ≡ 4	[5] 

… 
On constate une périodicité. 
Soit 𝑛 ∈ ℕ. Ce qui précède donne l’idée d’effectuer la division euclidienne de 𝑛 par 4. 
Il existe 𝑞 ∈ ℕ et 𝑟 ∈ ℕ tels que 𝑛 = 4𝑞 + 𝑟 et 0 ≤ 𝑟 < 4. 
Alors : 

2& = 2-0*1 = (2-)0 × 21 	≡ 10 × 21	[5] ≡ 21[5] 
On obtient synthétiquement : 
 

𝑟 0 1 2 3 

Reste de la division de 2-0*1 par 5 1 2 4 3 
 

II. Algorithme d’Euclide et PGCD de deux entiers 
 

1. Algorithme d’Euclide 
 
Soient 𝑎 et 𝑏 deux entiers. On note 𝐷(𝑎) l’ensemble des diviseurs de 𝑎 et 𝐷(𝑎, 𝑏) l’ensemble des diviseurs communs 
de 𝑎 et 𝑏. 
 
Lemme II.1 : Si 𝑎 et 𝑏 sont deux entiers, alors  𝐷(𝑎, 𝑏) = 𝐷(|𝑎|, |𝑏|) 
 
Démonstration : Il s’agit de prouver une égalité ensembliste. Nous allons procéder par double inclusion. 
 
⊂ Soit 𝑑 ∈ 𝐷(𝑎, 𝑏). 
En particulier, 𝑑 divise 𝑎 donc 𝑑 divise ±𝑎 et donc 𝑑 divise |𝑎| 
De même, 𝑑 divise |𝑏|. 
Donc 𝑑 ∈ 𝐷(|𝑎|, |𝑏|). 
 
⊃ Raisonnement similaire, laissé au lecteur. 
 
Remarque II.2 : ce lemme permet de limiter la recherche des diviseurs communs de deux nombres entiers à ceux de 
leurs valeurs absolues, c’est-à-dire de deux nombres entiers naturels. 
 
Lemme II.3 : Si 𝑎 et 𝑏 sont deux entiers naturels avec 𝑏 > 0 et si 𝑟 désigne le reste de la division euclidienne de 𝑎 par 
𝑏, alors 𝐷(𝑎, 𝑏) = 𝐷(𝑏, 𝑟). 
 
Démonstration : Également par double inclusion. 
Notons 𝑞 le quotient de la division euclidienne de 𝑎 par 𝑏, de sorte que 7𝑎 = 𝑏𝑞 + 𝑟

0 ≤ 𝑟 < |𝑏|. 

⊂ Soit 𝑑 ∈ 𝐷(𝑎, 𝑏). 
Alors 𝑑 divise 𝑎 et 𝑏. 
De plus 𝑟 = 𝑎 − 𝑏𝑞 donc 𝑑 divise 𝑟. 
Donc 𝑑 ∈ 𝐷(𝑏, 𝑟). 
 
⊃ Raisonnement similaire, laissé au lecteur. 
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Remarque II.4 : ce lemme permet de remplacer la recherche des diviseurs communs de 𝑎 et 𝑏 à ceux de 𝑏 et 𝑟, avec 
0 ≤ 𝑟 < |𝑏|. 
 
Lemme II.5 : Si 𝑎	est entier, alors  𝐷(𝑎, 0) = 𝐷(𝑎) 
 
Démonstration : Également par double inclusion, laissée au lecteur. 
 
Remarque II.6 : ce lemme permet de conclure si un des deux entiers est nul. 
 
Application II.7 : algorithme d’Euclide 
Soient 𝑎 et 𝑏 deux entiers. 
Notons 𝑟) = |𝑎| et 𝑟% = |𝑏|. D’après le lemme II.1 : 𝐷(𝑎, 𝑏) = 𝐷(𝑟), 𝑟%). 
 

• Étape 1 : 
§ Si 𝑟% = 0, alors 𝐷(𝑟), 𝑟%) = 𝐷(𝑟)) d’après le lemme II.5. 
§ Sinon, on effectue la division de 𝑟)	par 𝑟% : ∃! (𝑞%	; 𝑟!) 	∈ ℕ! tel que 7

𝑟) = 𝑟%𝑞% + 𝑟!
0 ≤ 𝑟! < 𝑟%

. 
On a alors d’après le lemme II.3 : 𝐷(𝑟), 𝑟%) = 𝐷(𝑟%, 𝑟!). 
 

• Étape 2 : 
§ Si 𝑟! = 0, alors 𝐷(𝑟%, 𝑟!) = 𝐷(𝑟%) d’après le lemme II.5. 
§ Sinon, on effectue la division de 𝑟%	par 𝑟! : ∃! (𝑞!	; 𝑟,) 		 ∈ ℕ! tel que 7

𝑟% = 𝑟!𝑞! + 𝑟,
0 ≤ 𝑟, < 𝑟!

. 
On a alors d’après le lemme II.3 : 𝐷(𝑟%, 𝑟!) = 𝐷(𝑟!, 𝑟,). 

… 
On obtient une suite d’entiers naturels (𝑟')'2)	strictement décroissante, donc ∃𝑁 ≥ 0 tel que 𝑟3 ≠ 0 et 𝑟3*% = 0. 
De plus 𝐷(𝑟), 𝑟%) = 	𝐷(𝑟%, 𝑟!) = 𝐷(𝑟!, 𝑟,) 	= ⋯ = 	𝐷(𝑟3, 𝑟3*%) = 𝐷(𝑟3). 
 
Exemple II.8 : Chercher avec l’algorithme d’Euclide les diviseurs communs de 56 et 12. 
 
Solution : 

• 56 = 4 × 12 + 8, donc 𝐷(56,12) = 𝐷(12,8). 
• 12 = 1 × 8 + 4, donc 𝐷(12,8) = 𝐷(8,4). 
• 8 = 2 × 4 + 0, donc 𝐷(8,4) = 𝐷(4,0). 
• D’après le lemme II.5, 𝐷(4,0) = 𝐷(4). 

Conclusion : les diviseurs communs de 56 et 12 sont ceux de	4, c’est-à-dire ±1,±2,±4. 
 

2. PGCD de deux entiers 
 
Propriété II.9 :  
Soient 𝑎 et 𝑏 deux entiers.  
Alors il existe un unique entier naturel, noté 𝑎 ∧ 𝑏 (ou 𝑃𝐺𝐶𝐷(𝑎	; 𝑏)) appelé plus grand commun diviseur de 𝑎 et 𝑏 tel 
que : 

1) 𝑎 ∧ 𝑏 divise 𝑎 et 𝑏 
2) Tout diviseur de 𝑎 et 𝑏 divise 𝑎 ∧ 𝑏 

De plus, ce PGCD, nul si 𝑎 et 𝑏 sont nuls, est, dans tous les autres cas, égal au dernier reste non nul dans 
l’algorithme d’Euclide appliqué à |𝑎|et |𝑏|. 
 
Démonstration : On suppose 𝑎 et 𝑏 non nuls. 

• Unicité : Soient 𝑑 et 𝑑’ deux entiers naturels vérifiant 1) et 2).  
D’après 1), 𝑑 est un diviseur commun de 𝑎 et 𝑏, donc d’après 2), 𝑑 divise 𝑑’. 
De même 𝑑′ divise 𝑑. 
Comme 𝑑 et 𝑑′ sont positifs, alors 𝑑 = 𝑑’. 
• Existence : Notons 𝑟3 le dernier reste non nul dans l’algorithme d’Euclide appliqué à |𝑎|et |𝑏|. 
C’est un entier naturel et d’après les lemmes précédents : 𝐷(𝑎, 𝑏) = 	𝐷(|𝑎|, |𝑏|) = 𝐷(𝑟3). Donc : 

o 𝑟3	divise 𝑎 et 𝑏 
o Tout diviseur de 𝑎 et 𝑏 divise 𝑟3 

Par unicité 𝑟3 = 𝑎 ∧ 𝑏. 
 
Exemple II.10 : Déterminer le PGCD de 2952 et 516. 
 
Solution : 

2952	 = 	516	 × 	5	 + 	372 
516	 = 	372	 × 	1	 + 	144 
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372	 = 	144	 × 2	 + 	84 
144	 = 	84	 × 	1	 + 	60 
84	 = 	60 × 	1	 + 	24	
60	 = 	24	 × 2	 + 	12	
24	 = 	12	 × 2	 + 	0	

 
Donc 2952 ∧ 516 = 12. 
 

3. Égalité de Bézout 
 
Propriété II.11 : Soient 𝑎 et 𝑏 deux entiers.  
Alors il existe deux entiers 𝑢 et 𝑣 (mais pas nécessairement uniques) tels que : 𝑎𝑢 + 𝑏𝑣 = 𝑎 ∧ 𝑏 
 
Démonstration : on reprend les notations utilisées pour l’algorithme d’Euclide avec 𝑟) = |𝑎| et 𝑟% = |𝑏|. On a : 

(0) 𝑢4𝑎 + 𝑣)𝑏 = 𝑟), avec 𝑢) = ±1 et 𝑣) = 0 
(1) 𝑢%𝑎 + 𝑣%𝑏 = 𝑟%, avec 𝑢% = 0 et 𝑣% = ±1 

 
On écrit 𝑟) = 𝑟%𝑞% + 𝑟!	avec 0 ≤ 𝑟! < 𝑟%, puis l’égalité (2) = (0) − 𝑞% × (1) : 

(2) 𝑢4𝑎 + 𝑣)𝑏 − 𝑞% × (𝑢%𝑎 + 𝑣%𝑏) = 𝑟) − 𝑞%𝑟% 
Soit : (𝑢) − 𝑞%𝑢%)𝑎 + (𝑣) − 𝑞%𝑣%)𝑏 = 𝑟) − 𝑞%𝑟% 
On obtient : 𝑢!𝑎 + 𝑣!𝑏 = 𝑟!, avec : 𝑢! = 𝑢) − 𝑞%𝑢% et 𝑣! = 𝑣) − 𝑞%𝑣% 
 

On écrit 𝑟% = 𝑟!𝑞! + 𝑟,	avec 0 ≤ 𝑟, < 𝑟%, puis l’égalité (3) = (1) − 𝑞! × (2) : 
(3) 𝑢%𝑎 + 𝑣%𝑏 − 𝑞! × (𝑢!𝑎 + 𝑣!𝑏) = 𝑟% − 𝑞!𝑟! 

Soit : (𝑢% − 𝑞!𝑢!)𝑎 + (𝑣% − 𝑞!𝑣!)𝑏 = 𝑟% − 𝑞!𝑟! 
On obtient : 𝑢,𝑎 + 𝑣,𝑏 = 𝑟,, avec : 𝑢, = 𝑢% − 𝑞!𝑢! et 𝑣, = 𝑣% − 𝑞!𝑣! 
 

On poursuit le processus jusqu’au premier reste nul : 𝑟3$% = 𝑞3𝑟3 + 0 
On a alors 𝑟3 = 	𝑎 ∧ 𝑏 et l’égalité (N) : 

(N) 𝑢3𝑎 + 𝑣3𝑏 = 𝑟3, avec : 𝑢3 = 𝑢3$! − 𝑞3$%𝑢3$% et 𝑣3 = 𝑣3$! − 𝑞3$%𝑣3$%. 
 
Remarque II.13 : La démonstration peut paraître ardue, en raison des notations, mais le principe est très simple : il 
s’agit simplement de « remonter l’algorithme d’Euclide » à partir du dernier reste non nul, comme nous allons l’illustrer 
avec l’exemple ci-dessous. 

 
Exemple II.14 : Chercher une solution particulière de 2952	 × 	𝑢	 + 	516	 × 	𝑣	 = 	12. 
 
Solution : 

2952	 = 	516	 × 5	 + 	372 (1) 
516	 = 	372	 × 1	 + 	144		 (2) 
372	 = 	144	 × 	2	 + 	84 (3) 
144	 = 	84	 × 1	 + 	60 (4) 
84	 = 	60	 × 	1	 + 	24 (5) 
60	 = 	24	 × 	2	 + 	12 (6) 
24	 = 	12	 × 	2	 + 	0 STOP 

Donc, comme déjà vu, 2952 ∧ 516 = 12. De plus : 
12 = 	60	 − 	24	 × 2 12	est exprimé par	(6) 
 = 60 − (84 − 60 × 1) × 2 24	est exprimé par	(5) 
 = 	60	 × 3	 − 	84	 × 2 Réduction 
 =	 (144	 − 	84	 × 1) 	× 	3	 − 	84		 × 	2 60 est exprimé par (4) 
 = 	144	 × 3	 − 	84	 × 5 Réduction 
 = 	144	 × 3	 −	(372	 − 	144	 × 2) 	× 5 84 est exprimé par (3) 
 = 	144	 × 13	 − 	372	 × 5 Réduction 
 =	 (516	 − 	372	´	1) 	× 13	 − 	372	 × 	5 144 est exprimé par (2) 
 = 516	 × 	13	 − 	372	 × 18 Réduction 
 = 516	 × 13	 −	(2952	

− 	516	 × 5) 	× 18 
372 est exprimé par (1) 

 = 516	 × 103	 − 	2952	 × 18 Réduction 
Conclusion :12 = 2952 × 𝑢 + 516 × 𝑣 avec	𝑢 = 	−18	et	𝑣 = 103. 
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4. Propriétés de base 
 
Propriété II.15 : (homogénéité du PGCD)  
Soient 𝑎, 𝑏 et 𝑝 trois entiers. 
Alors (𝑝𝑎) ∧ (𝑝𝑏) = |𝑝|𝑎 ∧ b 
 
Démonstration : Si 𝑝 = 0,	le résultat est trivial. On suppose donc 𝑝 non nul. 

• 𝑎 ∧ b divise 𝑎 et 𝑏, donc |𝑝|𝑎 ∧ b divise 𝑝𝑎 et 𝑝𝑏. 
Donc |𝑝|𝑎 ∧ b divise (𝑝𝑎) ∧ (𝑝𝑏). 

• 𝑝 divise 𝑝𝑎 et 𝑝𝑏, donc 𝑝 divise (𝑝𝑎) ∧ (𝑝𝑏) 
Ainsi ("6)∧("9)|"|

 est entier. 

Comme (𝑝𝑎) ∧ (𝑝𝑏) divise 𝑝𝑎 et 𝑝𝑏, ("6)∧("9)|"|
 divise par conséquent 𝑎 et 𝑏,	donc aussi 𝑎 ∧ b. 

Donc (𝑝𝑎) ∧ (𝑝𝑏) divise |𝑝|𝑎 ∧ b. 
 
Comme (𝑝𝑎) ∧ (𝑝𝑏) et |𝑝|𝑎 ∧ b sont positifs, on en déduit que (𝑝𝑎) ∧ (𝑝𝑏) = |𝑝|𝑎 ∧ b. 
 
Propriété II.16 : (associativité du PGCD)  
Soient 𝑎, 𝑏 et 𝑐 trois entiers. 
Alors (𝑎 ∧ b) ∧ 𝑐 = 𝑎 ∧ (𝑏 ∧ c). 
De plus, c’est l’unique nombre entier naturel, noté 𝑎 ∧ 𝑏 ∧ c, appelé PGCD de 𝑎, 𝑏 et 𝑐, tel que : 

1)	𝑎 ∧ 𝑏 ∧ c	divise	𝑎, 𝑏 et 	𝑐 
2) tout diviseur de 𝑎, 𝑏 et 	𝑐 divise	𝑎 ∧ 𝑏 ∧ c 

 
Démonstration : 

• (𝑎 ∧ b) ∧ 𝑐 divise 𝑎 ∧ b et 𝑐, donc divise 𝑎, 𝑏	et 𝑐, et donc divise a et 𝑏 ∧ c. 
Donc (𝑎 ∧ b) ∧ 𝑐 divise 𝑎 ∧ (𝑏 ∧ c). 
De même	𝑎 ∧ (𝑏 ∧ c)	divise (𝑎 ∧ b) ∧ 𝑐.	
Ces deux nombres étant des entiers naturels, on a donc (𝑎 ∧ b) ∧ 𝑐 = 𝑎 ∧ (𝑏 ∧ c). 

• Le point précédent a déjà établi que 𝑎 ∧ 𝑏 ∧ c	divise	𝑎, 𝑏 et 𝑐. 
• Soit maintenant 𝑑 un diviseur de 𝑎, 𝑏 et 𝑐. 

Alors il divise 𝑎 ∧ b et 𝑐, donc divise 𝑎 ∧ 𝑏 ∧ c. 
• Si 𝑑  et 𝑑′ sont deux PGCD de 𝑎, 𝑏 et 𝑐, alors comme 𝑑 divise 𝑎, 𝑏 et 𝑐, donc divise leur PGCD 𝑑′. 

De même, 𝑑’ divise 𝑑. 
Ces deux nombres étant des entiers naturels, on en déduit que 𝑑 = 𝑑′. 

 
Exemple II.17 :  
La propriété fournit la méthode pour déterminer le PGCD de trois nombres, par exemple avec l’égalité 𝑎 ∧ 𝑏 ∧ c = 
(𝑎 ∧ b) ∧ 𝑐. On a déjà vu que 2952 ∧ 516 = 12, donc 2952 ∧ 516 ∧ 8 = (2952 ∧ 516) ∧ 8 = 12 ∧ 8 = 4. 
 
Propriété II.18 : Soient 𝑎 et 𝑏 deux entiers.  
1) 𝑎 ∧ 𝑎 = 𝑎 
2) 𝑎 ∧ 𝑏 = 𝑏 ∧ 𝑎 
3) Soit 𝑘	un entier naturel non nul. Si 𝑘 divise 𝑎 et 𝑏, alors 6

'
∧ 9
'
= %

'
𝑎 ∧ 𝑏. 

4) Soit 𝑞 un entier relatif, alors 𝑎 ∧ 𝑏 = (𝑎 − 𝑏𝑞) ∧ 𝑏 
 

Démonstration : (dernier point uniquement, les trois autres sont laissées au lecteur) 
Soit 𝑑	 = 	𝑎 ∧ 𝑏 et 𝑑′	 = 	 (𝑎 − 𝑏𝑞) ∧ 𝑏 

§ 𝑑 divise 𝑎 et 𝑑 divise 𝑏 donc 𝑑 divise 𝑎	 − 	𝑏𝑞 (combinaison linéaire de 𝑎 et 𝑏) 
Donc 𝑑 est un diviseur commun à 𝑎	 − 	𝑏𝑞 et à 𝑏. 
Ainsi 𝑑 divise 𝑑′. 

§ 𝑑′ divise 𝑎	 − 	𝑏𝑞 et 𝑑′	divise 𝑏 donc 𝑑′	divise 𝑎	 − 	𝑏𝑞	 + 	𝑏𝑞	 = 	𝑎. 
Donc 𝑑# est un diviseur commun à 𝑎	et 𝑏. 
Ainsi 𝑑′	divise 𝑑. 
Comme 𝑑 et 𝑑′ sont positifs, 𝑑 = 𝑑′. 
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III. Nombres premiers entre eux 
 

1. Généralités 
 
Définition III.1 : 
Deux nombres entiers 𝑎 et 𝑏 sont dits premiers entre eux si et seulement si 𝑎 ∧ 𝑏 = 1 
 
Propriété III.4 : Soient 𝑎 et 𝑏 deux entiers. 
Si 𝑎 ∧ 𝑏 = 𝑑, alors les nombres 6

;
 et 9

;
 sont premiers entre eux. 

 
Démonstration : 
C’est quasiment immédiat : 6

;
∧ 9
;
= %

;
𝑎 ∧ 𝑏 = %

;
× 𝑑 = 1. 

 
2. Théorème de Bézout (1730-1783) 

 
Théorème III.5 : 
𝑎 ∧ 𝑏 = 1 ⇔	∃(𝑢; 𝑣) ∈ ℤ! tels que 𝑎𝑢	 + 	𝑏𝑣	 = 	1 
  
Démonstration : 
⟹ Si 𝑎 ∧ 𝑏 = 1, on a déjà vu qu’il existe une égalité de Bézout en remontant l’algorithme d’Euclide, c’est-à-dire : 
∃(𝑢; 𝑣) ∈ ℤ! tels que 𝑎𝑢	 + 	𝑏𝑣	 = 	1 
 
⟸ Si ∃(𝑢; 𝑣) ∈ ℤ! tels que 𝑎𝑢	 + 	𝑏𝑣	 = 	1, notons 𝑑 = 𝑎 ∧ 𝑏. 
Alors 𝑑 divise 𝑎, donc divise 𝑎𝑢.  
De même, 𝑑 divise 𝑏, donc divise 𝑏𝑣. 
Ainsi, 𝑑 divise 𝑎𝑢 + 𝑏𝑣 = 1. 
Comme 𝑑 est positif, alors 𝑑 = 1. 
 
Corollaire III.6 : 
𝑎 est premier avec 𝑏 et avec 𝑐 si et seulement si 𝑎 est premier avec le produit 𝑏𝑐. 
 
Démonstration : 

• Supposons que 𝑎 ∧ 𝑏 = 1 et que 𝑎 ∧ 𝑐 = 1. 
Alors ∃(𝑢; 𝑣) ∈ ℤ! tels que 𝑎𝑢	 + 	𝑏𝑣	 = 	1 
Et ∃(𝑤; 𝑥) ∈ ℤ! tels que 𝑎𝑤	 + 	𝑐𝑥	 = 	1 
Ainsi, en multipliant : (𝑎𝑢	 + 	𝑏𝑣)(	𝑎𝑤	 + 	𝑐𝑥) = 1 
On développe et on factorise ainsi : 𝑎(𝑎𝑢𝑤 + 𝑢𝑐𝑥 + 𝑏𝑣𝑤) + 𝑏𝑐(𝑣𝑥) = 1. 
Or  𝑎𝑢𝑤 + 𝑢𝑐𝑥 + 𝑏𝑣𝑤 et 𝑣𝑥 sont entiers, donc d’après le théorème de Bézout : 𝑎 est premier avec le produit 𝑏𝑐. 

• Réciproquement, si 𝑎 est premier avec le produit 𝑏𝑐, alors ∃(𝑢; 𝑣) ∈ ℤ! tels que 𝑎𝑢	 + 	𝑏𝑐𝑣	 = 	1 
En écrivant 𝑎𝑢	 + 	𝑏(𝑐𝑣) 	= 	1 et comme 𝑢 et 𝑐𝑣	sont entiers, 𝑎 et 𝑏 sont premiers entre eux d’après le théorème de 
Bézout. De même, en écrivant 𝑎𝑢	 + 	𝑐(𝑏𝑣) 	= 	1, on obtient que 𝑎 et 𝑐 sont premiers entre eux. 
 

3. Théorème de Gauss 
 
Théorème III.7 : 
Soit 𝑎, 𝑏 et 𝑐 trois entiers relatifs non nuls. 
Si 𝑎 divise 𝑏𝑐 et si 𝑎 et 𝑏 sont premiers entre eux, alors 𝑎 divise 𝑐. 
 
Démonstration 1 : 
𝑎 ∧ 𝑏 = 1 donc (𝑎𝑐) ∧ (𝑏𝑐) = |𝑐|𝑎 ∧ 𝑏 = |𝑐|. 
Or, 𝑎 divise 𝑎𝑐 et 𝑎 divise 𝑏𝑐, 𝑎 divise (𝑎𝑐) ∧ (𝑏𝑐) = |𝑐| 
Donc 𝑎 divise 𝑐. 
 
Démonstration 2 : 
𝑎 ∧ 𝑏 = 1	donc d’après le théorème de Bézout :	∃(𝑢; 𝑣) ∈ ℤ! tels que 𝑎𝑢	 + 	𝑏𝑣	 = 	1 
Donc 𝑎𝑢𝑐	 + 	𝑏𝑣𝑐	 = 	𝑐. 
Or 𝑎 divise 𝑏𝑐 donc divise 𝑏𝑣𝑐. 
Comme 𝑎 divise aussi 𝑎𝑢𝑐, alors a divise 𝑎𝑢𝑐	 + 	𝑏𝑣𝑐	 = 	𝑐. 
 
Corollaire III.8 : 
Soient 𝑎, 𝑏, 𝑐, 𝑑 quatre entiers non nuls, avec 𝑑	 ≥ 2. 
Si 𝑎𝑐	 ≡ 	𝑏𝑐	[𝑑] et si 𝑐 et 𝑑 sont premiers entre eux, alors 𝑎	 ≡ 𝑏	[𝑑]. 
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Démonstration : 
𝑎𝑐	 ≡ 𝑏𝑐	[𝑑] donc il existe 𝑘	 ∈ ℤ tel que (𝑎	 − 	𝑏)𝑐	 = 	𝑘𝑑. 
Or 𝑑 divise (𝑎	 − 	𝑏)𝑐 et 𝑑 est premier avec 𝑐 donc d’après le théorème de Gauss, 𝑑 divise 𝑎	 − 	𝑏. 
Autrement dit, 𝑎	 ≡ 𝑏	[𝑑]. 
 
  
Exercice III.9 : (lemme chinois) 
Soit 𝑝 et 𝑞 deux nombres premiers entre eux et soient	(𝑎; 𝑏) ∈ ℕ! tels que 0 ≤ 𝑎 < 𝑝 et  0 ≤ 𝑏 < 𝑞. 

1. Montrer qu’il existe 𝑛) ∈ ℤ tel que 7𝑛) ≡ 𝑎[𝑝]
𝑛) ≡ 𝑏[𝑞]. On pourra raisonner par analyse/synthèse. 

2. Exprimer en fonction de 𝑛) l’ensemble des solutions 𝑛 ∈ ℤ du système  7𝑛 ≡ 𝑎[𝑝]
𝑛 ≡ 𝑏[𝑞]. On pourra raisonner par 

analyse/synthèse. 

3. Déterminer l’ensemble des solutions entières du système 7𝑛 ≡ 9[17]
𝑛 ≡ 3[5]  

Solution : 
1. Analyse : supposons qu’il existe 𝑛) ∈ ℤ tel que 7𝑛) ≡ 𝑎[𝑝]

𝑛) ≡ 𝑏[𝑞]. 

Alors ∃𝑢) ∈ ℤ tel que 𝑛) = 𝑢)𝑝 + 𝑎 et ∃𝑣) ∈ ℤ tel que 𝑛) = 𝑣)𝑞 + 𝑏. 
Donc 𝑢)𝑝 − 𝑣)𝑞 = 𝑏 − 𝑎. 
Or, 𝑝 et 𝑞 sont premiers entre eux donc ∃(𝑢%; 𝑣%) ∈ ℤ! tels que 𝑝𝑢% 	+ 	𝑞𝑣% 	= 	1. 
Donc 𝑝𝑢%(𝑏 − 𝑎) + 	𝑞𝑣%(𝑏 − 𝑎) = 	𝑏 − 𝑎, c’est-à-dire 𝑢%(𝑏 − 𝑎)𝑝 + 𝑎 =	𝑣%(𝑎 − 𝑏)𝑞 + 𝑏. 
 
Synthèse : posons 𝑢) = 𝑢%(𝑏 − 𝑎), 𝑣) = 𝑣%(𝑎 − 𝑏) et 𝑛) = 𝑢)𝑝 + 𝑎.  
Ces trois nombres sont entiers et on a bien 𝑛) ≡ 𝑎[𝑝]. 
De plus : 
 𝑣)𝑞 + 𝑏 =	𝑣%(𝑎 − 𝑏)𝑞 + 𝑏 = 𝑣%𝑞(𝑎 − 𝑏) + 𝑏 = (1 − 𝑝𝑢%)(𝑎 − 𝑏) + 𝑏 = 𝑎 − 𝑏 + 𝑝𝑢%(𝑏 − 𝑎) + 𝑏 = 𝑢)𝑝 + 𝑎 = 𝑛). 
 
Donc 𝑛) ≡ 𝑏[𝑞]. 
 

2. Analyse : soit	𝑛 ∈ ℤ une solution du système  7𝑛 ≡ 𝑎[𝑝]
𝑛 ≡ 𝑏[𝑞]. 

 
Alors ∃(𝑢; 𝑣) ∈ ℤ! tel que 𝑛 = 𝑢𝑝 + 𝑎 = 𝑣𝑞 + 𝑏 . 
Or 𝑛) = 𝑢)𝑝 + 𝑎 = 𝑣)𝑞 + 𝑏 donc 𝑛 − 𝑛) = (𝑢 − 𝑢))𝑝 = (𝑣 − 𝑣))𝑞. 
Donc 𝑝 divise (𝑣 − 𝑣))𝑞 et comme 𝑝 et 𝑞 sont premiers entre eux, alors 𝑝 divise 𝑣 − 𝑣) d’après le théorème de 
Gauss. 
Ainsi, il existe 𝑘 ∈ ℤ tel que 𝑣 − 𝑣) = 𝑘𝑝 donc (𝑢 − 𝑢))𝑝 = 𝑘𝑝𝑞 d’où 𝑢 − 𝑢) = 𝑘𝑞 
On obtient donc 𝑛 − 𝑛) = 𝑘𝑝𝑞, ou encore 𝑛 = 𝑛) + 𝑘𝑞𝑝. 
 

Synthèse : réciproquement, s’il existe 𝑘 ∈ ℤ tel que 𝑛 = 𝑛) + 𝑘𝑞𝑝, alors 7𝑛 ≡ 𝑛)[𝑝] ≡ 𝑎[𝑝]
𝑛 ≡ 𝑛)[𝑞] ≡ 𝑏[𝑞]. 

 
3. On applique la méthode utilisée pour les questions précédentes en cherchant une solution particulière 𝑛)	du 

système. 
On vérifie d’abord que 17 et 5 sont premiers entre eux (ici, c’est trivial car 17 et 5 sont deux nombres premiers 
distincts) puis on cherche (𝑢%; 𝑣%) ∈ ℤ! tels que 17𝑢% 	+ 	5𝑣% 	= 	1. Pour cela, on applique l’algorithme 
d’Euclide : 

17	 = 	5	 × 3	 + 	2 (1) 
5	 = 	2	 × 2	 + 	1		 (2) 
2	 = 	2	 × 	1	 + 	0 STOP 

 
On le remonte pour trouver l’égalité de Bézout : 

1 = 	5	 − 	2	 × 2 1	est exprimé par	(2) 
 = 5 − (17 − 5 × 3) × 2 24	est exprimé par	(1) 
 = 	17	 × (−2) + 5	 × 7 Réduction 

 
  Posons alors 𝑛) = 𝑣)𝑞 + 𝑏 = 𝑣%(𝑎 − 𝑏)𝑞 + 𝑏 = 7 × (9 − 3) × 5 + 3 = 213. 
 

  On a bien :  7213 = 12 × 17 + 9 ≡ 9[17]
213 = 42 × 5 + 3 ≡ 3[5] . 

   
  De plus, 𝑛 ∈ ℤ vérifie le système si et seulement s’il existe 𝑘 ∈ ℤ tel que 𝑛 = 𝑛) + 𝑘𝑞𝑝 = 213 + 85𝑘. 
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Exercice III.10 (Théorème de Wilson) 
L’objectif de cet exercice est de démontrer le théorème de Wilson : 
Soit 𝑝 un entier naturel strictement supérieur à 1. Alors :  

𝑝 ∈ ℙ⇔ (𝑝	 − 	1)! 	≡ −1	[𝑝] 
 

1. Prouver le sens indirect. 
2. Pour le sens direct : 

a. Vérifier que la propriété est vraie pour 𝑝	 = 	2 et 𝑝	 = 	3. 
b. Soit 𝑝 un nombre premier supérieur ou égal à 5 et soit 𝑞 un entier naturel compris entre 2 et 𝑝	 − 2. 

Justifier qu’il existe des entiers a et b tels que a𝑞	 + 	b𝑝	 = 	1. 
c. Soit 𝑟 le reste de la division de a par 𝑝. 

i. Montrer que 𝑟𝑞	 ≡ 1	[𝑝]. 
ii. Vérifier que 2	 ≤ 𝑟	 ≤ 	𝑝	 − 2. 
iii. Montrer qu’à chaque entier 𝑞 compris 2 et (𝑝	 − 2), on peut associer de manière unique un entier 

𝑟 compris entre 2 et (𝑝	 − 2) tel que 𝑟𝑞	 ≡ 	1	[𝑝]. On pourra raisonner par l’absurde. 
d. Conclure. 

 
Solution : 

1. Si (𝑝	 − 1)	! 	≡ −1	[𝑝] alors ∃	𝑘	 ∈ 	ℤ	tel que (𝑝	 − 1)! 	+ 	1	 = 	𝑘𝑝 donc 𝑘𝑝 − (𝑝	 − 1)	! 			= 	1 
D’après le théorème de Bézout, (𝑝	 − 1)!	et 𝑝 sont premiers entre eux. 
Ainsi 𝑝 est premier avec tous les entiers naturels non nuls qui lui sont inférieurs. 
Donc 𝑝 est premier. 
 

2. Soit 𝑝 un nombre premier. 
a. Si 𝑝	 = 	2 ou 𝑝	 = 	3, le résultat est trivial. 
b. Soit 𝑝 un nombre premier supérieur ou égal à 5 et soit 𝑞 un entier naturel compris entre 2 et 𝑝	 − 2. 

𝑝 est premier donc 𝑝 et 𝑞 sont premiers entre eux. 
D’après le théorème de Bézout, il existe a et b entiers relatifs tels que a𝑞	 + 	b	𝑝	 = 	1. 

c. Soit 𝑟 le reste de la division de a par 𝑝. 
i. a𝑞	 + 	b	𝑝	 = 	1 ⟹ a𝑞 ≡ 1[𝑝]⟹ 𝑟𝑞 ≡ 1[𝑝] 
ii. 𝑟 le reste de la division de a par 𝑝, donc 0	 ≤ 	𝑟	 ≤ 	𝑝	 − 	1 . 

• Si 𝑟 = 0,	alors 𝑟𝑞 ≡ 1[𝑝] ⟹ 0 ≡ 1[𝑝], impossible. 
• Si 𝑟 = 1,	alors 𝑟𝑞 ≡ 1[𝑝] ⟹ 𝑞 ≡ 1[𝑝], donc 𝑝 divise 𝑞 − 1 ≤ 𝑝 − 3, impossible. 
• Si 𝑟 = 𝑝 − 1, alors (𝑝 − 1)𝑞 ≡ 1[𝑝] ⟹ −𝑞 ≡ 1[𝑝], donc 𝑝 divise 𝑞 + 1 ≤ 𝑝 − 1, impossible. 

Donc 2	 ≤ 	𝑟	 ≤ 	𝑝	 − 	2. 
iii. Soit 𝑞	et	𝑞’ deux entiers distincts compris 2 et (𝑝	 − 2). 

Raisonnons par l’absurde en supposant qu’il existe un entier 𝑟 tel que 2 ≤ 𝑟 ≤ 𝑝 − 2 et 7
𝑟𝑞 ≡ 1	[𝑝]	
𝑟𝑞’ ≡ 1	[𝑝] . 

Alors  𝑟(𝑞	 − 	𝑞’) ≡ 0	[𝑝]. 
Or −𝑝	 + 	2	 < 	𝑞	 − 	𝑞’	 < 	𝑝	 − 	2 et 𝑝 ∈ ℙ donc 𝑝	et (𝑞	 − 	𝑞’) sont premiers entre eux. 
D’après le théorème de Gauss, 𝑝 divise 𝑟, absurde. 
 
Donc, à chaque entier 𝑞 compris 2	et (𝑝	 − 	2), on peut associer de manière unique un entier 𝑟 compris entre 2 et (𝑝	 −
2) tel que 𝑟𝑞	 ≡ 	1	[𝑝]. 
 

d. Les entiers de 2 à 𝑝	 − 	2 peuvent être regroupés en couples de produit congru à 1 modulo 𝑝 (un nombre 
ne peut être associé à lui-même). 

Ainsi (𝑝	 − 	1)	! 	= (𝑝 − 2)! × (𝑝 − 1) ≡ 1 × (𝑝 − 1)	[𝑝] ≡ −1	[𝑝]. 
 

4. Résolution dans ℤ de l’équation diophantienne 𝒂𝒖 + 𝒃𝒗 = 𝒄 (𝒂, 𝒃, 𝒄	donnés)  
 
Dans ce paragraphe, on considère trois entiers 𝑎, 𝑏, 𝑐 avec 𝑎 ≠ 0 et 𝑏 ≠ 0. 
Existence de solutions éventuelles : 

• Supposons que l’équation ait au moins une solution (𝑢; 𝑣) ∈ ℤ!. 
𝑎 ∧ 𝑏 divise 𝑎 et 𝑏, donc 𝑎 ∧ 𝑏 divise 𝑎𝑢 + 𝑏𝑣 = 𝑐. 
Donc 𝑎 ∧ 𝑏 divise 𝑐. 

• Réciproquement, si 𝑎 ∧ 𝑏 divise 𝑐, alors il existe 𝑘 ∈ ℤ tel que 𝑐 = 𝑘(𝑎 ∧ 𝑏). 
De plus : ∃(𝑢); 𝑣)) ∈ ℤ! tels que 𝑎𝑢) 	+ 	𝑏𝑣) 	= 	𝑎 ∧ 𝑏. 
Donc 𝑐 = 𝑘(𝑎𝑢) 	+ 	𝑏𝑣)) = 𝑎(𝑘𝑢)) + 𝑏(𝑘𝑣)). 
Ainsi, puisque 𝑘𝑢) et 𝑘𝑣) sont entiers, (𝑘𝑢); 𝑘𝑣)) est une solution particulière de l’équation. 
 
On a obtenu le résultat suivant : 

Il existe	(𝑢; 𝑣) ∈ ℤ!	tel que	𝑎𝑢 + 𝑏𝑣 = 𝑐 si et seulement si 𝑎 ∧ 𝑏 divise 𝑐. 
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Recherche de l’ensemble des solutions : 
S’il existe des solutions, alors 𝑑 = 𝑎 ∧ 𝑏 divise 𝑎, 𝑏	et	𝑐, donc il existe trois entiers 𝑎′, 𝑏′ et 𝑐’ tels que 𝑎 = 𝑑𝑎′	, 𝑏 = 𝑑𝑏′ 
et 𝑐 = 𝑑𝑐′ et on peut diviser l’équation par 𝑑 ∶ 	 6

;
𝑢 + 9

;
𝑣 = <

;
 ie 𝑎′𝑢 + 𝑏′𝑣 = 𝑐′. 

De plus, on a déjà vu dans les généralités de cette partie que 𝑎# = 6
;
 et 𝑏# = 9

;
 sont premiers entre eux. 

Autrement dit, en divisant l’équation initiale par 𝑎 ∧ 𝑏, on se ramène à l’équation 𝑎′𝑢 + 𝑏′𝑣 = 𝑐′ avec 𝑎# ∧ 𝑏# = 1. 
 
Soit alors (𝑢)	; 𝑣)) une solution particulière de cette équation, de sorte que 𝑎′𝑢) 	+ 	𝑏′𝑣) = 𝑐#. 
Considérons maintenant une autre solution (𝑢	; 𝑣) : 𝑎#𝑢	 +	𝑏#𝑣 = 𝑐#. 
Par différence, on obtient : 𝑎′(𝑢 − 𝑢)) 	+ 	𝑏′(𝑣 − 𝑣)) = 0, ce qui équivaut à 𝑎′(𝑢 − 𝑢)) = 	𝑏′(𝑣) − 𝑣). 
Donc 𝑎′ divise 𝑏′(𝑣) − 𝑣). Comme 𝑎# ∧ 𝑏# = 1, 𝑎′ divise 𝑣) − 𝑣 d’après le théorème de Gauss. 
Ainsi il existe 𝑘 ∈ ℤ tel que 𝑘𝑎# = 𝑣) − 𝑣. 
Donc en reportant dans l’équation : 𝑎′(𝑢 − 𝑢)) = 	𝑏′𝑘𝑎′. 
Comme 𝑎′ ≠ 0, cette dernière égalité équivaut à 𝑢 − 𝑢) = 	𝑏′𝑘. 
En résumé, il existe 𝑘 ∈ ℤ tel que 𝑘𝑎# = 𝑣) − 𝑣 et 𝑢 − 𝑢) = 	𝑏′𝑘, c’est-à-dire 𝑣 = 𝑣) − 𝑘𝑎′ et 𝑢 = 𝑢) + 𝑘𝑏′. 
Réciproquement, tout couple (𝑢	; 𝑣) de cette forme vérifie l’équation 𝑎′𝑢 + 𝑏′𝑣 = 𝑐′. 
 
En résumé : 
Les solutions	(𝑢; 𝑣) ∈ ℤ!	de l’équation diophantienne	𝑎′𝑢 + 𝑏′𝑣 = 𝑐′avec 𝑎# ∧ 𝑏# = 1 sont de la forme 𝑢 = 𝑢) + 𝑘𝑏′ et 
𝑣 = 𝑣) − 𝑘𝑎′, où (𝑢)	; 𝑣)) est une solution particulière l’équation et 𝑘 ∈ ℤ. 
 
Exemples : 

• 2𝑥	 + 	8𝑦	 = 	5 n'admet pas de solution dans ℤ! car 2 ∧ 8 = 2 ne divise pas 5. 
 

• Résoudre l’équation diophantienne 6𝑥	 + 	4𝑦	 = 	10. 
 
Solution : 
On remarque que : 6𝑥	 + 	4𝑦	 = 	10	 ⇔ 	3𝑥	 + 	2𝑦	 = 	5 
 
Solution particulière évidente (si on en voit pas, on utilise l’algorithme d’Euclide, comme dans la partie II) : (1; 1). 
 
On a : 3𝑥	 + 	2𝑦 = 5

3 × 1 + 2 × 1 = 5u	donc 3𝑥	 + 	2𝑦	 = 	3 × 1	 + 	2 × 1.  
Ainsi 3(𝑥	 − 	1) 	= 	2(1	 − 	𝑦)  (*) 
Donc 3 divise 2(1	 − 	𝑦). 
De plus 3 ∧ 2 = 1. 
D’après le théorème de Gauss, 3 divise (1	 − 	𝑦). 
Il existe donc 𝑘 ∈ ℤ  tel que 1	 − 	𝑦	 = 	3𝑘 soit 𝑦	 = 	1	 − 	3𝑘. 
On reporte dans (*) :	3(𝑥	 − 	1) 	= 	2(1	 − 	𝑦) ⟺ 3(𝑥	 − 	1) 	= 	2	 × 3𝑘	 ⟺ 𝑥	 − 	1	 = 	2𝑘	 ⟺ 	𝑥	 = 	2𝑘	 + 	1 
 
Réciproquement, les couples de la forme (2𝑘	 + 	1; 1	 − 	3𝑘) vérifient l’équation. 
 
Les solutions de 6𝑥	 + 	4𝑦	 = 	10 sont donc de la forme (2𝑘	 + 	1; 1	 − 	3𝑘) avec 𝑘 ∈ ℤ . 
 
 

IV. Petit théorème de Fermat 
 
Théorème IV-1 : 
Soit 𝑎 un entier relatif et 𝑝 un nombre premier. 
Si 𝑝 ne divise pas 𝑎, alors 𝑎"$% 	≡ 1	[𝑝] 
 
Démonstration : 
On considère la liste de nombres suivante : 𝑎, 2𝑎, 3𝑎,… , (𝑝	 − 	1)𝑎. 
 
Montrons tout d’abord que si 𝑘 et 𝑘’ sont deux entiers distincts compris entre 1 et (𝑝	 − 	1), alors les restes de la 
division euclidienne par 𝑝 de 𝑘𝑎 et 𝑘’𝑎 sont distincts et non nuls. 
 
Effectuons la division euclidienne de 𝑘𝑎	par 𝑝 : il existe deux entiers 𝑞 et 𝑟 tels que 𝑘𝑎 = 𝑝𝑞 + 𝑟 avec 0 ≤ 	𝑟 < 	𝑝. 
Raisonnons par l’absurde en supposant que 𝑟	 = 	0. 
Alors 𝑘𝑎	 = 	𝑝𝑞.  
Or 𝑝 est premier et ne divise pas 𝑎, donc d'après le théorème de Gauss, 𝑝 divise 𝑘. 
Or 1	 ≤ 𝑘	 ≤ 𝑝	 − 	1, absurde. Donc 𝑟	 ≠ 	0. 
 
Effectuons la division euclidienne de 𝑘′𝑎	par 𝑝 : il existe deux entiers 𝑞′ et 𝑟′ tels que 𝑘′𝑎 = 𝑝𝑞′ + 𝑟′ avec 0 ≤ 𝑟′ < 	𝑝. 
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Raisonnons par l’absurde en supposant que 𝑟 = 	𝑟′. 
Alors 𝑘𝑎	 = 	𝑝𝑞	 + 	𝑟 et 𝑘′𝑎	 = 	𝑝𝑞′	 + 	𝑟. 
Par différence : (𝑘	 − 	𝑘′)𝑎	 = 	𝑝(𝑞	 − 	𝑞′) 
Donc 𝑝 divise (𝑘	 − 	𝑘′)𝑎. 
Or 𝑝 est premier et ne divise pas 𝑎 donc, d'après le théorème de Gauss, 𝑝 divise 𝑘	 − 	𝑘'. 
Or 1	 ≤ 𝑘	 ≤ 𝑝	 − 	1 et 1	 ≤ 𝑘# ≤ 𝑝	 − 	1	donc 1 − 𝑝 ≤ −𝑘# ≤ −1 et donc par somme 	2 − 𝑝	 ≤ 𝑘	 −	𝑘# ≤ 𝑝	 − 	2. 
Autrement dit |𝑘 − 𝑘′| ≤ 𝑝 − 2 et 𝑝 divise 𝑘	 − 	𝑘' 
Donc 𝑘	 − 	𝑘′	 = 	0, absurde. 
Ainsi 𝑟	 ≠ 	𝑟′. 
 
Montrons maintenant que la liste des restes dans la division euclidienne par 𝑝 de 𝑎, 2𝑎, 3𝑎,… , (𝑝	 − 1)𝑎 est 1, 2, … 	𝑝	 −
	1	 
 
Il y a 𝑝	 − 	1 restes deux à deux distincts appartenant à {1	; 	2	; 	…	; 	𝑝	 − 	1} qui contient 𝑝	 − 	1 éléments. 
Donc, à l’ordre près, les restes des divisions de 𝑎, 2𝑎,… , (𝑝	 − 	1)𝑎 par 𝑝 sont : 1, 2, … , 𝑝	 − 	1. 
 
On note 𝑟' le reste dans la division euclidienne de 𝑘𝑎. Donnons une écriture simplifiée de 𝑟%𝑟!…𝑟"_%. 
Les nombres de {1, 2, … 	𝑝	 − 	1} sont les restes associés à chaque division (chaque nombre correspond à exactement 
un reste). 
Donc 𝑟%𝑟!…𝑟"$% =	 (𝑝	 − 	1)	! 
 
Montrons que : (𝑝	 − 	1)	! 	𝑎"$% ≡	 (𝑝	 − 	1)	! 	[𝑝]. 
On a : 𝑎	 ≡ 𝑟%	[𝑝], 2𝑎	 ≡ 𝑟!	[𝑝], … , (𝑝	 − 	1)𝑎	 ≡ 𝑟"$%	[𝑝]. 
Par produit, on a : 𝑎	 × 2𝑎	 ×	…	× (𝑝	 − 	1)𝑎	 ≡ 𝑟% × 𝑟! ×…× 𝑟"$%	[𝑝] 
Soit (𝑝	 − 	1)!	𝑎"$% ≡	 (𝑝	 − 	1)!	[𝑝]. 
 
Achevons la démonstration. 
(𝑝	 − 	1)!	𝑎"$% ≡	 (𝑝	 − 	1)!	[𝑝] équivaut à (𝑝	 − 	1)!	(𝑎"$% − 1) ≡ 	0	[𝑝]. 
Donc 𝑝 divise (𝑝	 − 	1)!	(𝑎"$% − 1). 
Or 𝑝 ne divise pas (𝑝	 − 	1)!	 et 𝑝 est premier donc 𝑝 et (𝑝	 − 	1)	! sont premiers entre eux. 
Donc 𝑝 divise 𝑎"$% − 1.  
Autrement dit 𝑎"$% 	≡ 1	[𝑝]. 
 
Remarque IV.2 : Attention ! 
La réciproque du petit théorème de Fermat est fausse, c’est-à-dire que si 𝑎"$% 	≡ 	1	[𝑝], avec 𝑝 ne divisant pas, alors 𝑝 
n'est pas nécessairement premier 
 
Contre-exemple : 𝑎	 = 	7 et 𝑝	 = 	6. 
On a bien 7. = 16807 = 2801 × 6 + 1 ≡ 1[6] et 6 n’est pas premier. 
 
Corollaire IV.3 : 
Si 𝑝 est un nombre premier, alors pour tout entier 𝑎 : 𝑎" 	≡ 𝑎	[𝑝] 
 
Démonstration : 

1. 1er cas : 𝑝	ne divise pas a. 
D'après le théorème de Fermat, 𝑎"$% 	≡ 1	[𝑝].donc 𝑎 × 𝑎"$% 	≡ 𝑎 × 1	[𝑝], soit 𝑎" 	≡ 𝑎	[𝑝]. 
 

2. 2ème cas : 𝑝 divise 𝑎. 
Alors 𝑎	 ≡ 	0	[𝑝] et 𝑎" 	≡ 0	[𝑝], donc 𝑎" 	≡ 𝑎	[𝑝]. 
 
 

V. Quelques extraits du concours général 
 
Exercice V.1 : (logarithme discret) 
Si 𝑚% et 𝑚! sont deux entiers tels que 𝑚% ≤ 𝑚! , on désigne par [[𝑚1	,𝑚2]] l’ensemble des entiers 𝑘 tels que  
𝑚% ≤ 𝑘 ≤ 𝑚!.  
 
Si 𝑎 ,𝑏 et 𝑛 sont trois entiers, on note 𝑎	 ≡ 𝑏	[𝑛] lorsque 𝑎 et 𝑏 sont congrus modulo 𝑛, c’est-à-dire lorsque 𝑏	 − 	𝑎 est 
multiple de 𝑛. 
 
Dans tout cet exercice, 𝑝 désigne un nombre premier. 
 
Pour tout 𝐴	 ∈ 	IN, on note (𝐴	𝑚𝑜𝑑	𝑝) le reste de la division euclidienne de 𝐴 par 𝑝. C’est l’unique entier de [[0	, 𝑝	 − 	1]] 
congru à 𝐴 modulo 𝑝. 
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Un entier 𝑥	 ∈ 	[[1	, 𝑝	 − 	1]] est appelé racine primitive modulo 𝑝 lorsque l’ensemble des (𝑥'	𝑚𝑜𝑑	𝑝), pour  
𝑘	 ∈ 	IN est l’ensemble [[1	, 𝑝	 − 	1]], c’est-à-dire lorsque les puissances de 𝑥, calculées modulo 𝑝, décrivent  
[[1	, 𝑝	 − 	1]] tout entier. 
 
Ainsi, pour 𝑝	 = 	5 : 

• 1 n’est pas une racine primitive modulo 5 puisque toutes ses puissances valent 1. 
• 2 est une racine primitive modulo 5 puisque : (2)	𝑚𝑜𝑑	5) 	= 	1 ; (2%	𝑚𝑜𝑑	5) 	= 	2 ; (2!	𝑚𝑜𝑑	5) 	= 	4 et 

(2,	𝑚𝑜𝑑	5) 	= 	3 
• De même 3 est une racine primitive modulo 5 et 4 n’en est pas une. 

 
1.  On prend dans cette question 𝑝	 = 	7. Déterminer les racines primitives modulo 7. 
 
On admet désormais que, quel que soit le nombre premier 𝑝, il existe au moins une racine primitive modulo 𝑝. Dans la 
suite, on désigne par 𝑔 une racine primitive modulo	p. 
 
2. a.  Montrer que l’ensemble des (𝑔'	𝑚𝑜𝑑	𝑝) pour 𝑘	 ∈ [[0	, 𝑝	 − 	2]]	est [[1	, 𝑝	 − 	1]]. 
 b.  Soit 𝐴 ∈ 	[[1	, 𝑝	 − 	1]]. Justifier l’existence et l’unicité d’un entier 𝑎	 ∈ 	[[0	, 𝑝	 − 	2]] tel que 𝐴	 = 	 (𝑔6	𝑚𝑜𝑑	𝑝).  
     On dit que 𝑎 est le logarithme de base 𝑔 modulo 𝑝 de 𝐴. 
 c.  Soit 𝑏 un entier naturel congru à 𝑎 modulo 𝑝	 − 	1. Calculer (𝑔9	𝑚𝑜𝑑	𝑝). 
 
Solution : 
1. Pour 𝑝	 = 	7.  

 
						𝑘 
𝑥 0 1 2 3 4 5 Racine primitive 

1 1 1 1 1 1 1 Non 
2 1 2 4 1 2 4 Non 
3 1 3 2 6 4 5 Oui 
4 1 4 2 1 4 2 Non 
5 1 5 4 6 2 3 Oui 
6 1 6 1 6 1 6 Non 

  
Dans les cas où 𝑥 est égal à 1, 2, 4 ou 6, les suites de restes sont périodiques. 
 
Par exemple, tout entier naturel 𝑛 s’écrit 𝑛	 = 	3𝑞	 + 	𝑟 avec 𝑟	 ∈ 	[[0	, 2]] et 𝑞	entier naturel (division euclidienne). 
Donc 2& = 2,0*1 = (2,)0 × 21 
Ainsi  2& 	≡ 21[7] 
Donc (2&	𝑚𝑜𝑑	7) 	= 	 (2)	𝑚𝑜𝑑	7) 	= 	1 ou (2&	𝑚𝑜𝑑	7) 	= 	 (2%	𝑚𝑜𝑑	7) 	= 	2  ou (2&	𝑚𝑜𝑑	7) 	= 	 (2!	𝑚𝑜𝑑	7) 	= 	4. 

 
2.a. 𝑝 est premier et 𝑔	 < 	𝑝 donc 𝑝 ne divise pas 𝑔. 
Ainsi, d’après le petit théorème de Fermat : 𝑔"$% 	≡ 1[𝑝]. 
   
Soit 𝑛	 ∈ 	IN. 
Alors 𝑛	 = 	𝑞(𝑝	 − 	1) 	+ 	𝑘 avec 𝑘	 ∈ 	[[0	, 𝑝	 − 	2]] et 𝑞 entier naturel (division euclidienne). 
Donc 𝑔& = (𝑔"$%)0 × 𝑔'. 
Ainsi 𝑔& 	≡ 𝑔'[𝑝]. 
Or 𝑔 est une racine primitive modulo 𝑝 donc lorsque 𝑛 décrit IN, (𝑔&	𝑚𝑜𝑑	𝑝) décrit [[1	, 𝑝	 − 	1]]. 
Ainsi (𝑔'	𝑚𝑜𝑑	𝑝) pour 𝑘	 ∈ [[0	, 𝑝	 − 	2]]	est [[1	, 𝑝	 − 	1]]. 
  
 b.  D’après la question précédente, lorsque	𝑘 décrit [[0	, 𝑝	 − 	2]], (𝑔'	𝑚𝑜𝑑	𝑝) décrit [[1	, 𝑝	 − 	1]]. 
Comme ces deux ensembles ont le même nombre d’éléments (𝑝	 − 	1), alors pour tout entier 𝐴 de [[1	, 𝑝	 − 	1]], il 
existe un unique entier 𝑎 appartenant à [[0	, 𝑝	 − 	2]] tel que 𝐴	 = 	 (𝑔6	𝑚𝑜𝑑	𝑝). 
 
 c. Soit 𝑏 un entier naturel congru à 𝑎 modulo 𝑝	 − 	1. Il existe donc un entier 𝑘 tel que 𝑏	 = 	𝑎	 + 	𝑘(𝑝	 − 	1). 
Donc 𝑔9 = 𝑔6 × (𝑔"$%)'. 
Ainsi 𝑔9 	= 	𝑔6	[𝑝]. 
Donc (𝑔9	𝑚𝑜𝑑	𝑝) 	= 	 (𝑔6	𝑚𝑜𝑑	𝑝) 	= 	𝐴. 
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Exercice V.2 : (nombres pointus, session 2020) 
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Solution (de Gilbert JULIA, professeur agrégé honoraire), issue du site freemaths.fr 
(https://www.freemaths.fr/annales-composition-mathematiques-concours-general/concours-general-
mathematiques-corrige-serie-s-2020.pdf) : 
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