Arithmétique — Partie 2

1. Congruence

Définition 1.1 : Soient m, n deux entiers relatifs et d un entier naturel supérieur ou égal a 2. On dit que m et n sont
congrus modulo d sin — m est divisible par d. On note alors n = m [d]

Exemple 1.2 : 8 = 2 [3] car 8 — 2 = 6 est divisible par 3.

Remarque 1.3 : Soit a un entier relatif et b un entier relatif non nul. Il existe (division euclidienne de a par b) un unique
a=bq+r

0<r<|bl

Donca—r =bqgetdonca =r [b].

couple (q;r) € Z? tel que{

Remargue 1.4 : Attention !
Sia =r [b],alors r n'est pas forcément le reste de la division euclidienne de a par b.

Contre-exemple 1.5 :
65 — (—5) = 70 = 7 x 10 donc 65 = —5[7] mais 65 = 7 X 10 — 5 n’est pas la division euclidienne de 65 par 7, celle-ci
étant 65 =7 x 9 + 2.

Remarque 1.6 : Soient m, n deux entiers relatifs et d un entier naturel supérieur ou égal a 2. Alors par définition :
n =m [d] si et seulement s'il existe k € Ztelquen = m + kd.

Propriété 1.7 :
Soient m, n, m’, n’ quatre entiers relatifs et d un entier naturel supérieur ou égal a 2.
Sin =m[d]etn’ =m’'[d] alors:

Nn+n =m+ m'[d]
2)nn' = mm' [d]
3)VpeN, n? =mP [d]
4)Va€eZan=am|d]

Démonstration :
Sin =m|[d]etn’
Donc :
1) n+n=m+m' + (k + k')d
Ork + k' eZdoncn + n' = m + m'[d].
2) nxn=(m+kd)yx(m'+ k'dy= m xm' + (km' + k'm + kk')d.
Orkm'+ k'm + kk' eZdoncn x n'=m x m'[d].

3 n? —mP = (n — m)(MP! + nP2m + .. + mP~1) (Egalité de Bernouilli, voir ci-aprés)
Orn—m=0[d]etn’™! + nP2m + ..+ mP"L €Zdoncn? — mP = 0[d]ien? =m" [d].

m' [d] alors il existe (k; k") € Z? tels que : {7? B

4) an = a(m + kd) = am + akd.
Orak € Zdoncan = am [d]

Remargue 1.8 : Attention !
Les réciproques sont fausses.

Propriété 1.9 : (égalité de Bernouilli)
Soient a, b deux nombres réels et n un entier naturel supérieur ou égal a 1.

Alors : a" — b™ = (a — b) YRzsa™ ¥ 1b* = (a—b)(@"* + a™ 2b + -+ + ab™ 2 + b7 1),

Démonstration :

n-1 n-1 n-1
(a _ b) Z an—k—lbk - az an—k—lbk _ b Z an—k—lbk
k=0 k=0 k=0

n-1 n-1
— § an—kbk_ § an—k—lbk+1
k=0 k=0
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n-1 n

— Z an—kbk _ Z an—lbl

k=0 =1
n-1 n—-1
— an + E an—kbk _ E an—lbl _ bn
k=1 =1
=q"* —p"

Application 1.10 : Puissances d'un entier
Déterminer les restes de la division par 5 des puissances de 2™ pour n € N.

Solution :
20=1=1[5]
21= 2 =2[5]
22 = 4 =4[5]
23 =8 =3[5]
2= 16 =1[5]
25 =32 =2[5]
26 = 64 =4[5]

On constate une périodicité.
Soit n € N. Ce qui précéde donne I'idée d’effectuer la division euclidienne de n par 4.
llexisteqe NetreNtelsquen=4q+ret0<r<4.
Alors :

21 = 247 = (24)4 x 27 =19 x 2" [5] = 2"[5]
On obtient synthétiquement :

r 0 1 2 3
Reste de la division de 2**" par 5 1 2 4 3

Il. Algorithme d’Euclide et PGCD de deux entiers

1. Algorithme d’Euclide

Soient a et b deux entiers. On note D(a) 'ensemble des diviseurs de a et D(a, b) 'ensemble des diviseurs communs
de a et b.

Lemme Il.1 : Si a et b sont deux entiers, alors D(a,b) = D(|al, |b])

Démonstration : Il s’agit de prouver une égalité ensembliste. Nous allons procéder par double inclusion.

Soit d € D(a, b).

En particulier, d divise a donc d divise +a et donc d divise |a|
De méme, d divise |b]|.

Donc d € D(lal, |b]).

Raisonnement similaire, laissé au lecteur.

Remarque 1.2 : ce lemme permet de limiter la recherche des diviseurs communs de deux nhombres entiers a ceux de
leurs valeurs absolues, c’est-a-dire de deux nombres entiers naturels.

Lemme 11.3 : Si a et b sont deux entiers naturels avec b > 0 et si r désigne le reste de la division euclidienne de a par
b, alors D(a,b) = D(b, 7).

Démonstration : Egalement par double inclusion.

. . - =b
Notons q le quotient de la division euclidienne de a par b, de sorte que {g < rq<7br|'
Soit d € D(a, b).
Alors d divise a et b.
De plus r = a — bq donc d divise r.

Donc d € D(b, 7).

Raisonnement similaire, laissé au lecteur.
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Remarque Il.4 : ce lemme permet de remplacer la recherche des diviseurs communs de a et b a ceux de b et r, avec
0<r<|b|

Lemme IL.5 : Si a est entier, alors D(a,0) = D(a)

Démonstration : Egalement par double inclusion, laissée au lecteur.

Remarque 1.6 : ce lemme permet de conclure si un des deux entiers est nul.

Application Il.7 : algorithme d’Euclide
Soient a et b deux entiers.
Notons ry, = |a| et r; = |b|. D’apres le lemme 1.1 : D(a, b) = D(ry,1,).

e FEtape1:
= Sir, =0, alors D(ry,1,) = D(ry) d’aprés le lemme 11.5.
. S = +
= Sinon, on effectue la division de r, par r; : 3! (q, ;,) € N? tel que {7’00 <r1q1 2
<rn<n

On a alors d’apres le lemme 1.3 : D(ry, 1) = D(1y, 13).

e FEtape2:
= Sir, =0, alors D(ry,1,) = D(r;) d’aprés le lemme 11.5.
. S = +
= Sinon, on effectue la division de r; parr, : 3! (q,;13) € N? tel que {7‘10 <r2q2 £
<1<

On a alors d’apres le lemme 1.3 : D(1y,1,) = D(1y,13).

On obtient une suite d’entiers naturels (3,) o Strictement décroissante, donc IN > 0 tel que ry # 0 et ry,, = 0.
De plus D(rp, 1) = D(ry,13) = D(1y,13) =+ = D(ry,Ty41) = D(1y).

Exemple II.8 : Chercher avec I'algorithme d’Euclide les diviseurs communs de 56 et 12.

Solution :
e 56=4x12+8,doncD(56,12) = D(12,8).
e 12=1x8+4,donc D(12,8) = D(8,4).
e 8=2x4+0,donc D(84) = D(4,0).
e Daprés le lemme 1.5, D(4,0) = D(4).
Conclusion : les diviseurs communs de 56 et 12 sont ceux de 4, c’est-a-dire +1, +2, +4.

2. PGCD de deux entiers

Propriété IL.9 :
Soient a et b deux entiers.

Alors il existe un unique entier naturel, noté a A b (ou PGCD(a ; b)) appelé plus grand commun diviseur de a et b tel
que :

1) aAbdiviseaeth

2) Tout diviseur de a et b divise a A b
De plus, ce PGCD, nul si a et b sont nuls, est, dans tous les autres cas, égal au dernier reste non nul dans
I'algorithme d’Euclide appliqué a |alet |b].

Démonstration : On suppose a et b non nuls.
e Unicité : Soient d et d’ deux entiers naturels vérifiant 1) et 2).
D’aprés 1), d est un diviseur commun de a et b, donc d’apres 2), d divise d'.
De méme d’ divise d.
Comme d et d’ sont positifs, alors d = d’.
o Existence : Notons ry le dernier reste non nul dans I'algorithme d’Euclide appliqué a |alet |b|.
C’est un entier naturel et d’aprés les lemmes précédents : D(a,b) = D(|al, |b|) = D(ry). Donc:
o rmydiviseaeth
o Tout diviseur de a et b divise ry
Par unicité ry = a A b.

Exemple 11.10 : Déterminer le PGCD de 2952 et 516.

Solution :
2952 = 516 x 5 + 372
516 = 372 x 1 + 144
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372 = 144 x2 + 84
144 = 84 x 1 + 60
84 60x 1 + 24
60 24 x2 + 12
24 =12 x2+0

Donc 2952 A 516 = 12.

3. Egqalité de Bézout

Propriété 11.11 : Soient a et b deux entiers.
Alors il existe deux entiers u et v (mais pas nécessairement uniques) tels que : au + bv =a A b

Démonstration : on reprend les notations utilisées pour I'algorithme d’Euclide avec r, = |a| etr; = |b|. On a::
(0) upa +vyb =1y, avecuy, =tletv, =0
(1) wya+v,b=r,avecuy, =0etv, = +1

On écritry = r,q, + r, avec 0 < r, < ry, puis I'égalité (2) = (0) — g, x (1) :
(2) upa+vob — gy X (Wa +v1b) =15 — g1y
Soit : (U — q1ug)a + (vy — qv)b =15 — g1y
On obtient : u,a + v,b =1, avec : u, = uy — qu, et v, = vy — q vy

On écritr, = 1,q, + r;avec 0 < r; < 1y, puis I'égalité (3) = (1) — g, X (2) :
() wa+vib—qy X (Wa+v,b) =11 — g1,
Soit : (uy — qauz)a + (V1 — qov2)b =11 — @7
On obtient : uga + v3b =13, avec : u; = u; — qyu, et v; = v; —q,v,

On poursuit le processus jusqu’au premier reste nul : ry_; = qyry + 0
On aalors ry = a Ab etl'égalité (N) :
(N)uya+vyb =1y, avec:uy =uUy_ — qy_1Un-1 €1 Uy = Vy 53 — Qy_1Vy_1-

Remarque 11.13 : La démonstration peut paraitre ardue, en raison des notations, mais le principe est trés simple : il
s’agit simplement de « remonter I'algorithme d’Euclide » a partir du dernier reste non nul, comme nous allons lillustrer
avec I'exemple ci-dessous.

Exemple II.14 : Chercher une solution particuliére de 2952 X u + 516 X v = 12.

2952 = 516 x5 + 372 (1)
516 = 372 x1 + 144 (2)
372 = 144 x 2 + 84 (3)
144 = 84 x1 + 60 (4)
84 =60 X1+ 24 (5)
60 = 24 x 2 + 12 (6)
24 =12 x2+0 STOP
Donc, comme déja vu, 2952 A 516 = 12. De plus :

12 =60 — 24 x2 12 est exprimé par (6)
=60—-(84—-60x1)x2 24 est exprimé par (5)
=60 x3 — 84 x2 Réduction
= (144 — 84 x1) X 3 — 84 x 2 60 est exprimé par (4)
= 144 x3 — 84 X5 Réduction
= 144 x3 — (372 — 144 x2) X5 84 est exprimé par (3)
= 144 x13 — 372 x5 Réduction
= (516 — 372x1) x13 — 372 x 5 144 est exprime par (2)
=516 x 13 — 372 x 18 Réduction
=516 x13 — (2952 372 est exprimé par (1)

— 516 x5) x18
=516 X103 — 2952 x 18 Réduction

Conclusion :12 = 2952 x u + 516 x vavecu = —18etv = 103.
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4. Propriétés de base

Propriété 1l.15 : (homogénéité du PGCD)
Soient a, b et p trois entiers.
Alors (pa) A (pb) = [plaAb

Démonstration : Si p = 0, le résultat est trivial. On suppose donc p non nul.
e aADbdivise a et b, donc |pla A b divise pa et pb.

Donc |pla A b divise (pa) A (pb).
e pdivise pa et pb, donc p divise (pa) A (pb)

Ainsi (pa)h'# est entier.

Comme (pa) A (pb) divise pa et pb,
Donc (pa) A (pb) divise |pla A b.

(pa)l;\l(pb) divise par conséquent a et b, donc aussi a A b.

Comme (pa) A (pb) et |pla A b sont positifs, on en déduit que (pa) A (pb) = |pla Ab.

Propriété 11.16 : (associativité du PGCD)

Soient a, b et c trois entiers.

Alors (a Ab)Ac=aA (bAc).

De plus, c’est 'unique nombre entier naturel, noté a A b A ¢, appelé PGCD de a, b et c, tel que :
1)aAbAcdivisea,b et ¢
2) tout diviseur de a, b et c diviseaAb Ac

Démonstration :
e (aAb)Acdivise aAb et c, donc divise a, b et ¢, et donc divise a et b Ac.
Donc (a Ab) A ¢ divise a A (b Ac).
De méme a A (b A c) divise (a Ab) Ac.
Ces deux nombres étant des entiers naturels, on adonc (a Ab) Ac =a A (b Ac).
e Le point précédent a déja établi que a A b A cdivise a, b et c.
e Soit maintenant d un diviseur de a, b et c.
Alors il divise a Ab et ¢, donc divise a Ab A c.
e Sid etd sontdeux PGCD de a,b et c, alors comme d divise a, b et ¢, donc divise leur PGCD d'.
De méme, d’ divise d.
Ces deux nombres étant des entiers naturels, on en déduit que d = d'.

Exemple Il.17 :
La propriété fournit la méthode pour déterminer le PGCD de trois nombres, par exemple avec I'égalité a Ab A c =

(aAb) Ac. On adéjavuque 2952 A516 = 12, donc 2952 A516 A8 = (2952 A516) A8 =12A8 = 4.

Propriété 11.18 : Soient a et b deux entiers.

NaAa=a

2)aAb=bAa

3) Soit k un entier naturel non nul. Si k divise a et b, alors %/\% = %a Ab.
4) Soit g un entier relatif, alorsa Ab = (a —bq) A b

Démonstration : (dernier point uniquement, les trois autres sont laissées au lecteur)
Soitd = aAbetd = (a—bg)Ab
= ddivise a et d divise b donc d divise a — bq (combinaison linéaire de a et b)
Donc d est un diviseur commun a a — bqg eta b.
Ainsi d divise d'.
= d'divise a — bq et d’' divise b donc d' divise a — bq + bq = a.
Donc d' est un diviseur commun a a et b.
Ainsi d’ divise d.
Comme d et d’ sont positifs, d = d'.
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1. Nombres premiers entre eux

1. Généralités

Définition lll.1 :
Deux nombres entiers a et b sont dits premiers entre eux si et seulementsiaAb =1

Propriété lll.4 : Soient a et b deux entiers.
SiaAb =d, alors les nombres g et % sont premiers entre eux.

Démonstration :
C’est quasiment immédiat : %A% = %a Ab = % xd=1.

2. Théoréme de Bézout (1730-1783)

Théoréme lIL.5 :
aAb=1o 3(y;v) €Z?telsque au + bv = 1

Démonstration :
= SiaAb =1, onadéja vu qu’il existe une égalité de Bézout en remontant I'algorithme d’Euclide, c’est-a-dire :
I(u;v) € Z% telsque au + bv = 1

<= Sid(u;v) € Z? telsque au + bv = 1,notonsd = a A b.
Alors d divise a, donc divise au.

De méme, d divise b, donc divise bv.

Ainsi, d divise au + bv = 1.

Comme d est positif, alors d = 1.

Corollaire 111.6 :
a est premier avec b et avec c si et seulement si a est premier avec le produit bc.

Démonstration :
e SupposonsqueaAb=1etqueaAnc=1.
Alors 3(u; v) € Z% tels que au + bv = 1
Et3(w;x) € Z? telsque aw + cx = 1
Ainsi, en multipliant : (au + bv)(aw + cx) =1
On développe et on factorise ainsi : a(auw + ucx + bvw) + bc(vx) = 1.
Or auw + ucx + bvw et vx sont entiers, donc d’apres le théoréme de Bézout : a est premier avec le produit bc.
e Réciproquement, si a est premier avec le produit bc, alors 3(u; v) € Z? tels que au + bev = 1
En écrivant au + b(cv) = 1 et comme u et cv sont entiers, a et b sont premiers entre eux d’aprés le théoréme de
Bézout. De méme, en écrivant au + c(bv) = 1, on obtient que a et ¢ sont premiers entre eux.

3. Théoréme de Gauss

Théoréme .7 :
Soit a, b et ¢ trois entiers relatifs non nuls.
Si a divise bc et si a et b sont premiers entre eux, alors a divise c.

Démonstration 1 :

aAb=1donc (ac) A (bc) = |clanb =|c|.

Or, a divise ac et a divise bc, a divise (ac) A (bc) = |c|
Donc a divise c.

Démonstration 2 :

a A b = 1donc d’apres le théoréme de Bézout : 3(u; v) € Z? tels que au + bv = 1
Donc auc + bvc = c.

Or a divise bc donc divise bvc.

Comme a divise aussi auc, alors a divise auc + bvc = c.

Corollaire 111.8 :
Soient a, b, ¢, d quatre entiers non nuls, avec d > 2.
Siac = bc [d] et si c et d sont premiers entre eux, alors a = b [d].
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Démonstration :

ac = bc [d] donc il existe k € Z tel que (a — b)c = kd.

Or d divise (a — b)c et d est premier avec c donc d’apres le théoreme de Gauss, d divise a — b.
Autrement dit, a = b [d].

Exercice lll.9 : (lemme chinois)
Soit p et g deux nombres premiers entre eux et soient (a; b) E N> telsque 0 <a<pet 0<b <q.
ny = alp]
no = b[q]

2. Exprimer en fonction de n, 'ensemble des solutions n € Z du systeme {Z

. On pourra raisonner par analyse/synthese.

= a[p]
= b[q]

1. Montrer qu’il existe n, € Z tel que {

. On pourra raisonner par

analyse/synthese.

o . " : n = 9[17]
3. Déterminer 'ensemble des solutions entiéres du systéeme { n = 3[5]
o = alp]
o = blq]
Alors Ju, € Z tel que ny, = uyp + a et Iy, € Z tel que ny = vyq + b.
Donc ugp —vyq = b — a.
Or, p et q sont premiers entre eux donc 3(u,; v;) € Z2 tels que pu, + qv; = 1.
Donc pu,(b —a) + qv,(b —a) = b —a, c'est-a-dire u;(b—a)p+a = v,(a—b)q+b.

1. Analyse : supposons qu'il existe n, € Z tel que {Z

Syntheése : posons u, = u, (b — a), v, = vy(a — b) et ng = uyp + a.
Ces trois nombres sont entiers et on a bien n, = a[p].
De plus :

voq+b=v(a—b)g+b=vqla=b)+b=A-pu)(a—-b)+b=a—-b+pu(b—a)+b=uyp+a=n,.

Donc n, = b[q].

2. Analyse : soitn € Z une solution du systéme {Z i a[p].

Alors 3(u;v) €EZ? telquen=up+a=vq+>b.
Orng=uyp+a=vyg+bdoncn—nyg=(u—1uyp=w-—1y)q.

Donc p divise (v — v,)q et comme p et g sont premiers entre eux, alors p divise v — v, d’aprés le théoréme de
Gauss.

Ainsi, il existe k € Z tel que v — v, = kp donc (u — uy)p = kpq d'ol u —uy, = kq

On obtient donc n — ny, = kpq, ou encore n = ny + kqp.

Synthése : réciproquement, s’il existe k € Z tel que n = n, + kqp, alors {n f molp] f a[p]_
n =nelq] = blq]
3. On applique la méthode utilisée pour les questions précédentes en cherchant une solution particuliére n, du

systéme.
On vérifie d’abord que 17 et 5 sont premiers entre eux (ici, c’est trivial car 17 et 5 sont deux nombres premiers
distincts) puis on cherche (u;; v,) € Z? tels que 17u; + 5v;, = 1. Pour cela, on applique I'algorithme

d’Euclide :
17 =5 %x3 + 2 (1)
5=2x%x2+1 (2)
2=2%x1+0 STOP
On le remonte pour trouver I'égalité de Bézout :
1 =5-2x2 1 est exprimé par (2)
=5—-(17-5%x3)x2 24 est exprimé par (1)
=17 X (-2)+5 x7 Réduction

Posons alorsny =vyq+b=v,(a—b)q+b=7%x(9—-3)x5+3 =213.

213 =12% 17 + 9 = 9[17]

On a bien : { 213 =42x5+3=3[5] °

De plus, n € Z vérifie le systéme si et seulement s'il existe k € Z tel que n = ny, + kqp = 213 + 85k.
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Exercice lll.10 (Théoréme de Wilson)
L’objectif de cet exercice est de démontrer le théoreme de Wilson :

Soit p un entier naturel strictement supérieur a 1. Alors :
pEPS (p — 1! =-1]p]

1. Prouver le sens indirect.
2. Pour le sens direct :
a. Veérifier que la propriété est vraie pourp = 2etp = 3.
b. Soit p un nombre premier supérieur ou égal a 5 et soit g un entier naturel compris entre 2 etp — 2.
Justifier qu'il existe des entiers et ftels que aq + fp = 1.

c. Soit r le reste de la division de « par p.
i. Montrer que rq =1 [p].
ii. Vérifierque2 <r < p —2.
iii. Montrer qu’'a chaque entier g compris 2 et (p — 2), on peut associer de maniére unique un entier
r compris entre 2 et (p — 2) tel que rq = 1 [p]. On pourra raisonner par I'absurde.
d. Conclure.

Solution :
1. Si(p —1)! =—-1[plalors3k € Ztelque(p —1)! + 1 = kpdonckp—(p —1)! =1
D’apres le théoréme de Bézout, (p — 1)! et p sont premiers entre eux.
Ainsi p est premier avec tous les entiers naturels non nuls qui lui sont inférieurs.
Donc p est premier.

2. Soit p un nombre premier.
a. Sip = 2oup = 3, lerésultat est trivial.
b. Soit p un nombre premier supérieur ou égal a 5 et soit g un entier naturel compris entre 2 etp — 2.
p est premier donc p et q sont premiers entre eux.
D’apres le théoréme de Bézout, il existe « et g entiers relatifs tels que ag + fp = 1.
c. Soit r le reste de la division de & par p.
i. ag+Pp=1=aq=1[pl =rq=1lp
ii. rlereste de la division de & par p, donc 0
e Sir=0,alors rq = 1[p] = 0 = 1[p], impossible.
e Sir=1,alors rq = 1[p] = q = 1]p], donc p divise g — 1 < p — 3, impossible.
e Sir=p-—1,alors (p—1)q = 1[p] = —q = 1[p], donc p divise ¢ + 1 < p — 1, impossible.
Donc2 <r <p -2
ii. Soit q et g’ deux entiers distincts compris 2 et (p — 2).

|
<r<p-1.

Raisonnons par I'absurde en supposant qu'’il existe un entierrtelque 2 <r <p—2et {

Alors r(q — q) =0 [p].
Or—p+2<q—-qg <p-—-2etpePdoncpet(q — q') sont premiers entre eux.
D’aprés le théoreme de Gauss, p divise r, absurde.

rq = 1[p]
rq =1[p]

Donc, a chaque entier g compris 2 et (p — 2), on peut associer de maniére unique un entier r compris entre 2 et (p —
2)telquerqg = 1p].

d. Lesentiersde 2ap — 2 peuvent étre regroupés en couples de produit congru a 1 modulo p (un nombre
ne peut étre associé a lui-méme).
Ainsi(p — D! =@-D!x@-D=1x{@-1[p]=-1[p]

4. Résolution dans Z de I’équation diophantienne au + bv = ¢ (a, b, c donnés)

Dans ce paragraphe, on considére trois entiers a,b,c aveca # 0 et b # 0.
Existence de solutions éventuelles :
e Supposons que I'équation ait au moins une solution (u; v) € Z2.
a A b divise a et b, donc a A b divise au + bv = c.
Donc a A b divise c.
e Réciproquement, si a A b divise c, alors il existe k € Z tel que ¢ = k(a A b).
De plus : 3(uy; v) € Z2 tels que auy + bvy, = aAb.
Donc ¢ = k(au, + bvy) = a(kuy) + b(kv,).
Ainsi, puisque ku, et kv, sont entiers, (ku,; kv,) est une solution particuliere de I'équation.

On a obtenu le résultat suivant :

Il existe (u; v) € Z? tel que au + bv = ¢ si et seulement si a A b divise c.
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Recherche de I’ensemble des solutions :
S'il existe des solutions, alors d = a A b divise a, b et ¢, donc il existe trois entiers a’, b’ et ¢’ tels que a = da’, b = db’

et ¢ = dc’ et on peut diviser I'équation par d : %u + %v = g ieau+b'v=c.

sen ;s " : b .
De plus, on a déja vu dans les généralités de cette partie que a’ = %et b' = - sont premiers entre eux.
Autrement dit, en divisant I'équation initiale par a A b, on se raméne a I'équation a'u + b'v = ¢" avec a’ Ab' = 1.

Soit alors (u, ; v,) une solution particuliére de cette équation, de sorte que a'u, + b'vy, = ¢'.
Considérons maintenant une autre solution (u;v) : a'u + b'v =c'.

Par différence, on obtient : a’(u — uy) + b'(v — v,) = 0, ce qui équivaut a a’(u — u,) = b'(vy — v).
Donc a' divise b’ (v, — v). Comme a’ A b’ = 1, a’ divise v, — v d’apres le théoréme de Gauss.

Ainsi il existe k € Z tel que ka' = v, — v.

Donc en reportant dans I'équation : a'(u — u,) = b'ka’.

Comme a’ # 0, cette derniére égalité équivaut a u —u, = b'k.

En résumé, il existe k € Z tel que ka’ = v, — v etu —u, = b'k, cest-a-dire v =v, — ka' etu = u, + kb'.
Réciproquement, tout couple (u ; v) de cette forme vérifie I'équation a'u + b'v = ¢'.

En résumé :

Les solutions (u; v) € Z? de I'équation diophantienne a'u + b'v = c'avec a’ A b’ = 1 sont de la forme u = u, + kb’ et
v =1, — ka', ou (u, ; vy) est une solution particuliére I'équation et k € Z.

Exemples :
e 2x + 8y = 5 n'admet pas de solution dans Z? car 2 A 8 = 2 ne divise pas 5.

e Résoudre I'équation diophantienne 6x + 4y = 10.

Solution :
Onremarqueque : 6x + 4y = 10 & 3x + 2y = 5

Solution particuliere évidente (si on en voit pas, on utilise I'algorithme d’Euclide, comme dans la partie 1) : (1; 1).

Ona:siﬁizzizis}don”x +2y =3x1+2x1.

Ainsi3(x — 1) = 2(1 — y) (%)

Donc 3 divise 2(1 — y).

Deplus3A2=1.

D’aprés le théoreme de Gauss, 3 divise (1 — y).

llexistedonck €Z telque 1l — y = 3k soity = 1 — 3k.

Onreportedans (*):3(x — 1) =21 —y)e3x - 1) =2x3k ox-1=2k = x =2k + 1

Réciproquement, les couples de la forme (2k + 1;1 — 3k) vérifient I'équation.

Les solutions de 6x + 4y = 10 sontdonc de la forme (2k + 1;1 — 3k)aveck € Z.

Iv. Petit théoreme de Fermat

Théoréme IV-1 :
Soit a un entier relatif et p un nombre premier.
Si p ne divise pas a, alors a?~! =1 [p]

Démonstration :
On consideére la liste de nombres suivante : a, 2a,3a, ...,(p — 1Da.

Montrons tout d’abord que si k et k’ sont deux entiers distincts compris entre 1 et (p — 1), alors les restes de la
division euclidienne par p de ka et k'a sont distincts et non nuls.

Effectuons la division euclidienne de ka par p : il existe deux entiers q et r tels que ka = pg +ravec 0 < r < p.
Raisonnons par I'absurde en supposant que r = 0.

Alors ka = pq.

Or p est premier et ne divise pas a, donc d'aprés le théoreme de Gauss, p divise k.

Or1 <k <p — 1, absurde. Doncr # 0.

Effectuons la division euclidienne de k'a par p : il existe deux entiers g’ et r’ tels que k'a = pq’ + " avec 0 < r' < p.
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Raisonnons par I'absurde en supposant que r = r'.

Alorska = pqg + retk'a = pq' + r.

Par différence : (k — ka = p(q — q)

Donc p divise (k — k")a.

Or p est premier et ne divise pas a donc, d'aprés le théoreme de Gauss, p divise k — k'

Orl1 <k <p-1letl <k'<p —1doncl—-p<-k'<-letdoncparsomme 2—p <k —k'<p — 2.
Autrement dit |k — k'| <p —2 et p divise k — k'

Donc k — k' = 0, absurde.

Ainsir = r'.

Montrons maintenant que la liste des restes dans la division euclidienne par p de a,2a,3q, ...,(p —1)aest1,2,...p —
1

llyap — 1restes deux a deux distincts appartenanta {1; 2; ... ; p — 1} qui contientp — 1 éléments.
Donc, a l'ordre prés, les restes des divisions de a, 2a, ...,(p — 1)aparpsont:1,2,..,p — 1.

On note 7, le reste dans la division euclidienne de ka. Donnons une écriture simplifiée de ry7, .75, 4.

Les nombres de {1,2,... p — 1} sont les restes associés a chaque division (chaque nombre correspond a exactement
un reste).

Doncriry ..ty = (p — D!

Montronsque: (p — D'!'a?'= (p — D! [p].

Ona:a =mn[pl,2a =nr,[p],...(p — Da =r,_4 [p].

Par produit,ona:a X 2a X .. X(p — Da =1 X1, X .. X1,_4 [p]
Soit(p — D'aP™t= (p — ! [p].

Achevons la démonstration.

(» — D!'aP™ = (p — D! [p] équivauta (p — D! (a?1—1) = 0[p].

Donc p divise (p — 1)! (a?™1 —1).

Or p ne divise pas (p — 1)! et p est premier donc p et (p — 1) ! sont premiers entre eux.
Donc p divise a?~1 — 1.

Autrement dit a?~! = 1 [p].

Remargque V.2 : Attention !
La réciproque du petit théoréme de Fermat est fausse, c’est-a-dire que si a?~! = 1 [p], avec p ne divisant pas, alors p
n'est pas nécessairement premier

Contre-exemple: a = 7etp = 6.
On a bien 7° = 16807 = 2801 x 6 + 1 = 1[6] et 6 n'est pas premier.

Corollaire IV.3 :
Si p est un nombre premier, alors pour tout entier a : a? = a [p]

Démonstration :
1. 1% cas:pne divise pas a.
D'aprés le théoréme de Fermat, a?~! =1 [p].donc a x a?~! =a x 1 [p], soit a? = a [p].

2. 2°me cas : p divise a.
Alors a = 0 [p] eta? =0 [p], donca? = a|p].

V. Quelques extraits du concours général

Exercice V.1 : (logarithme discret)
Sim, et m, sont deux entiers tels que m; < m, , on désigne par [m1,m2]] 'ensemble des entiers k tels que
m; <k <m,.

Si a ,b et n sont trois entiers, on note a = b [n] lorsque a et b sont congrus modulo n, c’est-a-dire lorsque b — a est
multiple de n.

Dans tout cet exercice, p désigne un nombre premier.
Pour tout A € IN, on note (A mod p) le reste de la division euclidienne de A par p. C’est I'unique entier de [[0,p — 1]

congru a A modulo p.
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Unentierx € [[1,p — 1] est appelé racine primitive modulo p lorsque I'ensemble des (x* mod p), pour
k € IN estl'ensemble [[1,p — 1]], c’est-a-dire lorsque les puissances de x, calculées modulo p, décrivent
[1,p — 1] tout entier.

Ainsi, pourp = 5:
¢ 1 n’est pas une racine primitive modulo 5 puisque toutes ses puissances valent 1.
e 2 est une racine primitive modulo 5 puisque : (2°mod 5) = 1; (2 mod5) = 2; (22 mod 5) = 4 et
(23mod5) = 3
e De méme 3 est une racine primitive modulo 5 et 4 n’en est pas une.

1. On prend dans cette question p = 7. Déterminer les racines primitives modulo 7.

On admet désormais que, quel que soit le nombre premier p, il existe au moins une racine primitive modulo p. Dans la
suite, on désigne par g une racine primitive modulo p.

2. a. Montrer que 'ensemble des (g* mod p) pour k € [[0,p — 2]lest[[1,p — 1]
b. SoitA € [[1,p — 1]. Justifier I'existence et I'unicité d’'un entiera € [[0,p — 2] telque A = (g® mod p).
On dit que a est le logarithme de base g modulo p de A.
c. Soit b un entier naturel congru & a modulo p — 1. Calculer (g? mod p).

Solution :
1. Pourp = 7.
xk 0 1 2 3 4 5 Racine primitive
1 1 1 1 1 1 1 Non
2 1 2 4 1 2 4 Non
3 1 3 2 6 4 5 Oui
4 1 4 2 1 4 2 Non
5 1 5 4 6 2 3 Oui
6 1 6 1 6 1 6 Non

Dans les cas ou x est égal a 1, 2, 4 ou 6, les suites de restes sont périodiques.

Par exemple, tout entier naturel n s’écritn = 3q + r avecr € [0, 2] et q entier naturel (division euclidienne).
Donc 2" = 239+ = (23)4 x 2"

Ainsi 2™ = 2"[7]

Donc (2" mod 7) = (2°mod 7) = 1ou (2"mod7) = (2'mod7) = 2 ou (2"mod 7) = (22mod 7) = 4.

2.a.p est premieret g < p donc p ne divise pas g.
Ainsi, d’aprés le petit théoréeme de Fermat : g*~1 = 1[p].

Soitn € IN.

Alorsn = q(p — 1) + kaveck € [J[0,p — 2] et q entier naturel (division euclidienne).
Donc g™ = (gP~1)4 x gk.

Ainsi g™ = g*[p].

Or g est une racine primitive modulo p donc lorsque n décrit IN, (g™ mod p) décrit [[1,p — 1].
Ainsi (g¥ mod p) pourk € [[0,p — 2]l est[1,p — 1]

b. D’aprés la question précédente, lorsque k décrit [0,p — 2], (g* mod p) décrit [1,p — 1]).
Comme ces deux ensembles ont le méme nombre d’éléments (p — 1), alors pour tout entier Ade [1,p — 1], il
existe un unique entier a appartenanta [[0,p — 2] telque A = (g® mod p).

c. Soit b un entier naturel congru a a modulo p — 1. Il existe donc un entier k telque b = a + k(p — 1).
Donc g2 = g x (gP~H)k.

Ainsi g®* = g% [p].

Donc (g°? mod p) = (g* mod p) = A.
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Exercice V.2 : (nombres pointus, session 2020)

1 Probléme 1: Nombres pointus

Soit 7 un entier naturel non nul. On dit que » est pointu si # admet au plus un facteur premier
ou bien si, en notant p et g les deux plus grands facteurs premiers de n, avec p > g, I'inégalité
p =24 est vérifiée.

Par exemple, 1 est pointu, car il n’a aucun facteur premier. De méme, 25 est pointu, car il n’a
qu’un seul facteur premier, et 147 est pointu, car 147 = 3 x 72 et 7 = 2 x 3. Au contraire, 105 n’est
pas pointu, puisque 105=3x5x7et7 <2 x5.

Dans ce probléeme, on cherche a démontrer qu’il existe des suites arbitrairement longues d’en-
tiers consécutifs pointus. Plus précisément, on souhaite démontrer la propriété 22 suivante :

Pour tout entier m = 1, il existe un entier z = 0 tel que les nombres n+1,n+2,...,n + m soient
tous pointus.

1.1 Quelques exemples

1. Le nombre 2020 est-il pointu?

2. Quel est le plus petit entier naturel non nul qui ne soit pas pointu?

3. Quel est le plus petit nombre pointu possédant au moins quatre facteurs premiers distincts?
4. Démontrer qu'il existe une infinité de nombres pointus.

5. Démontrer qu'il existe une infinité d’entiers naturels non nuls qui ne sont pas pointus.

6

. Etablir la liste des nombres pointus entre 1 et 20 inclus. Quelle est la longueur maximale
d’une suite de nombres pointus consécutifs entre 1 et 20?

1.2 Peude grands nombres premiers

Onpose 0l =1,et /! =1x2x---x ¥ =¢(—1)! pour tout entier £ > 1. Soient alors k et n deux
entiers naturels tels que k < n. On s'intéresse a la fraction

n!
kl(n-k)!

que l'on note Fy, .

7. a. Calculer les valeurs des nombres F3; et Fg 4.
b. Démontrer que, si k=0 ou k = n, alors Fp, ;. = 1.
c. Démontrer que, sil< k<n-1, alors F, = Fp—1,k + Fn—1,k-1

d. En déduire que, pour tout entier naturel n et pour tout entier naturel k < n, Fp, ;. est un
entier naturel non nul inférieur ou égal a 2™.

Dans cette question et dans les parties qui suivent, pour tout entier naturel n, on note P,, I'en-
semble des nombres premiers p tels que n+1 < p < 2n, et on note 7, le nombre d’éléments de
Py.
8. a. Démontrer que, pour tout nombre premier p appartenant a I'ensemble P, I'entier Fz,
est divisible par p.
b. Démontrer que, si g, b et ¢ sont des entiers naturels non nuls tels que b et ¢ sont premiers
entre eux et divisent a, alors I’entier bc divise a lui aussi.

c. Soit d le produit de tous les éléments de P,. Démontrer que I'entier F»y, , est divisible par
d.

d. En déduire que n" < 22",
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Solution (de Gilbert JULIA, professeur agrégé honoraire), issue du site freemaths.fr
(https://lwww.freemaths.fr/annales-composition-mathematigues-concours-general/concours-general-
mathematiques-corrige-serie-s-2020.pdf) :

Partie I : Quelques exemples

1. 2020 =2% x5x101 et étant donné que 101 >2x 5, le nombre 2020 est pointu.

2. Les entiers 1, 2, 3, 4, 5 sont pointus car ils ont au plus un facteur premier. En revanche, 6 n’est pas pointu
puisque il a deux facteurs premiers, 2 et 3, et que son plus grand facteur premier est strictement inférieur au

double de son autre facteur premier. C’est le plus petit entier non pointu.

3.C’st 2x3x5x11=330

4. Tout nombre premier est pointu et il y a une infinité de nombres premiers. L’ensemble des nombres

pointus contient un sous-ensemble infini, il est lui-méme infini.

5. Pour tout entier strictement positif p: u, =2” x3 n’est pas pointu (pour la méme raison que I’entier 6).

L’ensemble des nombres non pointus contient une suite infinie d’entiers distincts : il existe une infinité

d’entiers non pointus.

6.

Entier |1 |2 |3 |4 [5]6 |7 (|8 |9 |10 [11]12 [13|14 |15 |16|17|18 |19 |20
Factor |1 |2 |3 [22|5 |23 |7 |2°|3% 25|11 |223|13(27|35|2* |[17|23%|19]|2%5
Pointu |P [P [P [P |P |x |[P|P |P |P [P |x |P [P [x [P |P |[x |P |P

On observe deux suites de longueur 5 constituées de nombres pointus consécutifs.
Partie II : Peu de grands nombres premiers

NB. Les nombres F, , dont il est question dans cette partie sont les coefficients binomiaux.

Ta. F;, =3 ; F,, =126

n!
7b. F,,=F,, = ol = 1. La raison essentielle de ce résultat est le fait que 0!=1
Ixn!

7.c. Soit » un entier au moins égal a 2 (de fagon que I’inégalité 1<n—1 ait un sens). L’hypothése
1<k<n-1 garantit alors I’existence de chacun des deux nombres F, ,, et F, ,, . La somme de ces deux

nombres s’exprime ainsi :

-1\ —1)! —1)! -1\ —-1)!
F o +F . = (n—1)! .\ (n—1)! _(n-k)x (n-1)! rhx (n—1)! ax (n—1)!
’ ’ k!(n—l—k)! (k—l)!(n—k)! k!(n—k)! k!(n—k)! k!(n—k)!
Vu que 7 x (n —1)!= n!,onobtient: F, ,, +F, |, , =#!k)' =F,;
(n—k)
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7.d. Les nombres F, ; F\,; F}, sont des entiers, tous égaux a 1.

Considérons la propriété suivante dépendant du rang » : « Pour tout entier k tel que 0<k <n, le nombre
F,,, estun entier naturel non nul inférieur ou égal a 2" ».

Cette propriété est vérifiée au rang 0 et au rang 1. Nous allons démontrer cette propriété par récurrence,
récurrence qui va s’amorcer a partir du rang 1 par le faitque : F,,=F;, =1< 2'.

Supposons que cette propriété soit vérifiée pour un rang (n - 1) au moins égal a 1, c'est-a-dire supposons que
tous les nombres F, | ,, (k=0,..,n —l) soient des entiers naturels non nuls inférieurs ou égaux a 2" et

considérons les nombres F, , ; F,| ;..; F i 5.5 F,

n, n nn*
e D’unepart: F,,=F,, =1, il s’agit d’entiers naturels non nuls inférieurs ou égaux a2" .
e D’autre part, pour 1<k<mn-1, la relation de récurrence du 7.b est opérationnelle:

F ,=F,_,+F, ., -Lenombre F,, estunesomme de deux entiers naturels non nuls, c’est donc

lui-méme un entier naturel non nul, et il est inférieur ou égal a 2" + 2" =2",
Autrement dit, si la propriété considérée est vérifiée au rang n—12>1, elle est aussi est vérifiée au rang n.
Etant vérifiée au rang 0, initialisée au rang 1 et héréditaire a partir de ce rang 1, elle est vérifiée pour tout

entier naturel n.

_ (on)t

n,n_(n !)2 :

8.a. Le nombre F,, , est un entier naturel non nul qui s’exprime ainsi: F, De ce fait:

@2n)=F,, ,x(n!).

Soit p un nombre premier tel que n+1< p<2n.

e Etant un facteur dans la factorielle de 2n, il divise cette factorielle.
e En tant que nombre premier, il est premier avec tous les entiers qui lui sont strictement inférieurs, en
particulier avec tous les entiers de 1 a »n, donc avec leur produit, la factorielle de », ainsi qu’avec le

carré de cette factorielle.

Le nombre p divise le nombre (2r)! =F,, , x(n!)* et il est premier avec (n !)2 . D’aprés le théoréme de

2n, n

Gauss, il divise F,, , .

8.b. Soit a, b, ¢ des entiers naturels non nuls.

e Si b divise a, il existe un entier naturel non nul u tel que : a=bu

e Si cdivise a, il existe un entier naturel non nul v tel que : a=cv
Nous disposons par conséquent de 1’égalité : bu =cv . Mais b étant premier avec c et divisant le produit cv,
d’apres le théoréme de Gauss, b divise v : il existe un entier naturel non nul w tel que v=bw.

Ainsi: a=cbw.L’entier a est le produit de b¢ par un entier naturel non nul : I’entier ¢ divise a.
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8.c. Plus généralement, si b,, b,,..., b, sont des entiers premiers entre eux deux a deux qui divisent tous a,
alors leur produit divise a (il suffit d’appliquer autant de fois que nécessaire 8.b, sachant que pour chaque
indice j=2,..,k le nombre b; est premier avec le produit b, x...xb;_; puisque il est premier avec chacun
des facteurs).

Cette propriété s’applique en particulier pour tous les nombres premiers p qui appartiennent a P, sous
réserve que cet ensemble soit non vide : en tant que nombres premiers distincts, ils sont premiers entre eux

deux a deux, et tous divisent F,, , d’aprés 8.a. Par conséquent, leur produit d divise F;, ,.

8.d. Le nombre d étant le produit de 7, entiers tous au moins égaux a n, il est au moins égal & n™ . Etant un

diviseur de F), ,, il lui est inférieur ou égal et d’aprés 7.c le nombre F,, , est inférieur ou égal a 2%" Nous

n,n?

obtenons la suite d’inégalités : n™ <d <F, <2

(Nous pourrions en déduire : 7, <21In2x lnL , ce qui expliquerait I’intitulé de cette partie)
n
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